首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
  国内免费   35篇
安全科学   1篇
环保管理   1篇
综合类   19篇
基础理论   25篇
污染及防治   8篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2004年   1篇
  2003年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
DEP (diethyl phthalate,邻苯二甲酸二乙酯)是一种在环境中普遍存在的具有潜在神经和生殖毒性的增塑剂,其会干扰环境生物的发育水平、运动行为及生化水平.以秀丽隐杆线虫的体长、体宽、头部摆动频率及生化指标作为测试终点,评估环境中DEP对秀丽隐杆线虫的生态毒理效应.在不同环境浓度(0、0.000 2、0.002、0.02、0.2、2 mg/L)的DEP溶液中,对秀丽隐杆线虫进行不同时间(24 h、72 h和10 d)的暴露试验.结果表明:①在不同浓度DEP溶液中暴露24 h后,秀丽隐杆线虫的发育水平均未受到显著影响(P>0.05).②在不同浓度DEP溶液中暴露72 h后,秀丽隐杆线虫的发育水平受到干扰.与对照组相比,在DEP浓度最高(2 mg/L)时,秀丽隐杆线虫体长下降了3.21%(P < 0.05);在DEP浓度为0.000 2 mg/L时,秀丽隐杆线虫的体宽呈上升趋势,且头部摆动频率明显加快了5.52%(P < 0.01),秀丽隐杆线虫的发育水平受到显著抑制.③在不同浓度DEP溶液中暴露10 d后,与对照组相比,秀丽隐杆线虫的体长、体宽和头摆频率均出现下降;在DEP浓度为2 mg/L时,秀丽隐杆线虫体内活性氧自由基、脂褐素和细胞凋亡水平累积均增长显著,出现氧化应激损伤.研究显示,不同环境浓度的DEP溶液会对秀丽隐杆线虫产生一定的毒性影响,且不同暴露时间和暴露浓度产生的毒性影响也存在一定差异.   相似文献   
2.
Wu Q  Qu Y  Li X  Wang D 《Chemosphere》2012,87(11):1281-1287
Here we investigated whether the assay system (10-d) in Caenorhabditis elegans can be used to evaluate chronic toxicity of chromium (Cr(VI)) at environmental relevant concentrations ranging from 5.2 μg L−1 to 260 μg L−1. The results indicated that lethality, locomotion behavior as revealed by head thrash, body bend, and forward turn, metabolism as revealed by pumping rate and mean defecation cycle length, intestinal autofluorescence, and ROS production were severely altered in Cr chronically exposed nematodes at environmental relevant concentrations. The most surprising observations were that head thrash, body bend, intestinal autofluorescence, and ROS production in 13 μg L−1 Cr exposed nematodes were significantly influenced. The observed adverse effects of Cr on survival, locomotion behavior, and metabolism were largely due to forming severe intestinal autofluorescence and ROS production. Therefore, our findings demonstrate the usefulness of chronic toxicity assay system in C. elegans in evaluating the chronic toxicity of toxicants at environmental relevant concentrations.  相似文献   
3.
Although a number of manufactured nanoparticles are applied for the medical and clinical purposes, the understanding of interaction between nanomaterials and biological systems are still insufficient. Using nematode Caenorhabditis elegans model organism, we here investigated the in vivo toxicity or safety of hydroxylated fullerene nanoparticles known to detoxify anti-cancer drug-induced oxidative damages in mammals. The survival ratio of C. elegans rapidly decreased by the uptake of nanoparticles from their L4 larval stage with resulting in shortened lifespan (20 d). Both reproduction rate and body size of C. elegans were also reduced after exposure to 100 μg mL−1 of fullerol. We found ectopic cell corpses caused by apoptotic cell death in the adult worms grown with fullerol nanoparticles. By the mutation of core pro-apoptotic regulator genes, ced-3 and ced-4, these nanoparticle-induced cell death were significantly suppressed, and the viability of animals consequently increased despite of nanoparticle uptake. The apoptosis-mediated toxicity of nanoparticles particularly led to the disorder of digestion system in the animals containing a large number of undigested foods in their intestine. These results demonstrated that the water-soluble fullerol nanoparticles widely used in medicinal applications have a potential for inducing apoptotic cell death in multicellular organisms despite of their antioxidative detoxifying property.  相似文献   
4.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   
5.
张绪超  陈懿  胡蝶  赵力  王琳  吴敏 《中国环境科学》2019,39(6):2644-2651
为了评价生物炭的使用对生态系统,尤其是对土壤无脊椎动物的毒性影响,使用模式生物秀丽隐杆线虫(Caenorhabditis elegans,C.elegans)来评估生物炭的环境风险.观察了生物炭原样、生物炭颗粒物和生物炭浸提液对线虫神经行为学评价指标(身体摆动频率、相对运动长度、排泄间隔时间、碰触反应率和化学感知行为指数)的影响;并结合生物炭的理化性质、非金属元素组成和重金属元素含量以及环境持久性自由基(EPFRs)的强度,评估生物炭对线虫的生物毒性.结果显示,EPFRs信号强的生物炭和颗粒物对秀丽隐杆线虫有一定的毒物兴奋效应,EPFRs信号微弱的浸提液无显著性影响.因此,生物炭中的EPFRs对秀丽隐杆线虫有潜在的神经毒性作用.  相似文献   
6.
Among more than 75 variants of microcystin(MC),microcystin-LR(MC-LR) is one of the most common toxins.In this study,the feasibility of using Caenorhabditis elegans to evaluate MC-LR toxicity was studied.C.elegans was treated with MC-LR at different concentrations ranging from 0.1 to 80 μg/L.The results showed that MC-LR could reduce lifespan,delay development,lengthen generation time,decrease brood size,suppress locomotion behavior,and decreases hsp-16-2-gfp expression.The endpoints of generation time,brood...  相似文献   
7.
Apart from the liver disruption, embryotoxicity and genotoxicity, microcystin (MC)-LR also could cause neurotoxicity. Nematode Caenorhabditis elegans was explored as a model to study the neurotoxicity. In the present study, we provided evidence to indicate the neurotoxicity on chemotaxis to NaCl and diacetyl, and thermotaxis from MC-LR exposure to C. elegans. As a result, higher concentrations of MC-LR caused significantly severe defects of chemotaxis to NaC1 and diacetyl, and thermotaxis. The neurotoxicity on chemotaxis to NaCl and diacetyl, and thennotaxis from MC-LR exposure might be largely mediated by the damage on the corresponding sensory neurons (ASE, AWA, and AFD) and interneuron AIY. The expression levels of che-1 and odr-7 were significantly decreased (P<0.01) in animals exposed to MC-LR at concentrations lower than 10 μg/L, whereas the expression levels of ttx-1 and ttx-3 could be significantly (P<0.01) lowered in animals even exposed to 1 μg/L of MC-LR. Moreover, both the chemotaxis to NaCl and diacetyl and the thermotaxis were more significantly reduced m MC-LR exposed mutants of che-1(p674), odr-7(ky4), ttx-1(p767), and ttx-3(ks5) than those in exposed wild-type N2 animals at the same concentrations.  相似文献   
8.
Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 mol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 mol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 mol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.  相似文献   
9.
This study examined behavioral and enzymatic changes of C. elegans from its exposure to aluminum, and the resulting relationship with Alzheimer's disease. After chronic and acute exposure to aluminum, the results indicated that it alters the cholinergic status and behavior parameters of the nematode, suggesting a relationship between exposure to aluminum and the etiology of AD.  相似文献   
10.
为了探究重金属单独及联合暴露对秀丽隐杆线虫(Caenorhabditis elegans)繁殖的影响及其作用机制,采用96孔板液相暴露试验,以环境相关浓度(0.1~50.0 μg/L)的Cd、Hg、Pb暴露同步化处理秀丽隐杆线虫,24 h后统计其怀卵数及阴门畸形率,以及连续记录72 h内子一代秀丽隐杆线虫的个体数,最后利用2×2析因设计方差分析阐明重金属的两两联合作用模式. 结果表明:与对照组相比,Cd、Hg、Pb单独及联合暴露对秀丽隐杆线虫的繁殖具有显著抑制作用,ρ(Cd)为50.0 μg/L、ρ(Hg)为10.0 μg/L、ρ(Pb)为50.0 μg/L暴露组秀丽隐杆线虫子一代数量分别降低了43.5%、33.8%、51.0%;Cd-Hg暴露组〔当ρ(Cd)、ρ(Hg)分别为50.0、10.0 μg/L时〕、Hg-Pb暴露组〔当ρ(Hg)、ρ(Pb)分别为10.0、50.0 μg/L时〕、Cd-Pb暴露组〔当ρ(Cd)、ρ(Pb)分别为50.0、50.0 μg/L时〕秀丽隐杆线虫子一代个体数分别降低了44.7%、61.0%、53.3%. 进一步研究发现,Cd、Hg、Pb单独及联合暴露会引起秀丽隐杆线虫子宫内受精卵数量降低以及产卵器阴门结构畸形率升高. 2×2析因设计方差分析结果发现,Cd、Hg、Pb两两联合暴露对秀丽隐杆线虫的繁殖表现为没有交互作用或者交互方式为拮抗. 研究显示,秀丽隐杆线虫子宫内怀卵数的降低是其子一代数量显著减少的主要原因,而阴门结构的损伤可能使产卵行为受损,从而进一步加剧重金属对秀丽隐杆线虫繁殖的抑制作用.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号