以葡萄糖为碳源,在USB反应器内接种好氧活性污泥在40 d内培养出良好的反硝化颗粒污泥.颗粒污泥形成经历了2个阶段:起始阶段,接种的好氧活性污泥中非反硝化菌逐渐衰亡演变为"惰性固体",与原有的固体一起,成为反硝化菌附着生长的载体,与此同时,反硝化菌在载体表面渐渐繁殖,形成细颗粒污泥;随后,反硝化菌在细颗粒污泥表面不断增殖,颗粒长大,发育成为成熟的颗粒污泥.成熟的颗粒污泥密实,表面均为杆状菌,且排列紧密,当污泥床容积负荷为19.1 g N/L·d时,去除率高达98.4%(N). 相似文献
Road environments significantly affect in cabin concentration of particulate matter (PM). This study conducted measurements of in-vehicle and on-road concentrations of PM10, PM2.5, PM1, and particle number (PN) in size of 0.02–1 µm, under six ventilation settings in different urban road environments (tunnels, surface roads and elevated roads). Linear regression was then used to analyze the contributions of multiple predictor variables (including on-road concentrations, temperature, relative humidity, time of day, and ventilation settings) to measured variations. On-road measurements of PM2.5, PM1, and PN concentrations from the open surface roads were 5.5%, 3.7%, and 16% lower, respectively, than those measured in tunnels, but 7.6%, 7.1% and 24% higher, respectively, than those on elevated roads. The highest on-road PM10 concentration was observed on surface roads. The time series pattern of in-vehicle particle concentrations closely tracked the on-road concentrations outside of the car and exhibited a smoother profile. Irrespective of road environment, the average I/O ratio of particles was found to be the lowest when air conditioning was on with internal recirculation, the highest purification efficiency via ventilation was obtained by switching on external air recirculation and air conditioning. Statistical models showed that on-road concentration, temperature, and ventilation setting are common factors of significance that explained 58%-80%, 64%-97%, and 87%-98% of the variations in in-vehicle PM concentrations on surface roads, on elevated roads, and in tunnels, respectively.
Implications: Inside vehicles, both driver and passengers will be exposed to elevated particle concentrations. However, for in-vehicle particles, there has been no comprehensive comparative study of the three-dimensional traffic environment including tunnels surface roads and elevated roads. This study focuses on the analysis of the trends and main influencing factors of particle concentrations in different road environments. The results can provide suggestions for the driver's behavior, and provide data support for the environmental protection department to develop pollutant concentration limits within the vehicle. 相似文献
Environmental Science and Pollution Research - The effect of air staging strategies on NOx control was investigated on a 210-kW small-scale biomass boiler (SBB) and a 1.4-MW medium-scale biomass... 相似文献
Environmental Science and Pollution Research - Three sequential extraction procedures (SEPs), modified Tessier, modified BCR, and CIEMAT, were compared for mercury fractionation in polluted soils.... 相似文献
Environmental Science and Pollution Research - The sorption/desorption behaviors of benzene, toluene, ethylbenzene, and xylene (BTEX) on soil organic matter (SOM) have a significant influence on... 相似文献
Environmental Science and Pollution Research - Fetal growth has been demonstrated to be an important predictor of perinatal and postnatal health. Although the effects of maternal exposure to air... 相似文献