首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity.  相似文献   

2.
Restoration of Landscape Structure Altered by Fire Suppression   总被引:2,自引:0,他引:2  
There is increasing interest in applying landscape ecological research to the management of wildlands, particularly regarding the negative effects of fragmentation and the benefits of corridors. Patch-producing large disturbances, such as fires and floods, produce a spatial mosaic structure in landscapes to which many species are sensitive. Management of the spatial structure of the patch mosaic has seldom been an explicit concern, however, in part because of insufficient knowledge about bow this spatial structure is affected by alterations in the disturbance regime. Yet the patch mosaic structure of many landscapes has been altered by disturbance control (such as fire suppression), and there is substantial interest in restoring natural disturbance regimes in some wildland landscapes. It has been proposed that, in landscapes subjected to decades of fire suppression, simple reinstatement of the natural fire regime may lead to adverse effects because fuel buildup during fire suppression may result in unusually large fires. It has also been proposed that the use of small prescribed fires may be an effective approach to restoration of landscapes subjected to fire suppression. Here I use a spatial GIS-based simulation model to analyze the effects of reinstating a natural fire regime in the Boundary Waters Canoe Area, Minnesota, after 82 years of fire suppression. The simulation experiment suggests that suppression can be expected to significantly alter landscape structure, but landscape structure can generally be restored within 50–75 years by reinstating the natural fire regime. Unusually large fires would probably hasten the restoration of landscape structure, while small prescribed fires will not restore the landscape but instead will produce further alteration.  相似文献   

3.
Examining the potential for ecological restoration is important in areas where anthropogenic disturbance has degraded forest landscapes. However, the conditions under which restoration of degraded tropical dry forests (TDF) might be achieved in practice have not been determined in detail. In this study, we used LANDIS-II, a spatially explicit model of forest dynamics, to assess the potential for passive restoration of TDF through natural regeneration. The model was applied to two Mexican landscapes under six different disturbance regimes, focusing on the impact of fire and cattle grazing on forest cover, structure and composition. Model results identified two main findings. First, tropical dry forests are more resilient to anthropogenic disturbance than expected. Results suggested that under both a scenario of small, infrequent fires and a scenario of large, frequent fires, forest area can increase relatively rapidly. However, forest structure and composition differed markedly between these scenarios. After 400 years, the landscape becomes increasingly occupied by relatively shade-tolerant species under small, infrequent fires, but only species with both relatively high shade tolerance and high fire tolerance can thrive under conditions with large, frequent fires. Second, we demonstrated that different forms of disturbance can interact in unexpected ways. Our projections revealed that when grazing acts in combination with fire, forest cover, structure and composition vary dramatically depending on the frequency and extent of the fires. Results indicated that grazing and fire have a synergistic effect causing a reduction in forest cover greater than the sum of their individual effects. This suggests that passive landscape-scale restoration of TDF is achievable in both Mexican study areas only if grazing is reduced, and fires are carefully managed to reduce their frequency and intensity.  相似文献   

4.
Collins SL  Smith MD 《Ecology》2006,87(8):2058-2067
Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas.  相似文献   

5.
Populations of plants that rely on seeds for recovery from disturbance by fire (obligate seeders) are sensitive to regimes of frequent fire. Obligate seeders are prominent in fire-prone heathlands of southern Australia and South Africa. Population extinction may occur if there are successive fires during a plant's juvenile period. Research on the population biology of obligate seeders has influenced the management of fire in these heath and shrublands, but work on the effects of the spatial variability of fires is lacking. We hypothesize that extinction maybe avoided under an adverse fire frequency if fires are patchy. We present a model that simulates the effects of spatial and temporal variations in fire regimes on the viability of a plant population in a grid landscape. Seedling establishment, maturation, senescence, and seed dispersal determine the presence or absence of plants in each cell. We used values typical of serotinous Banksia species to estimate probability of extinction in relation to fire frequency and size. We examined the sensitivity of predictions to dispersal, senescence, fire frequency, spatial burning pattern and size variance, and the size of the grid. Simulations 200 years in length indicated that extinction probability was lowest when mean fire frequency was intermediate and mean fire size was large. When fire frequency was high, extinction probability was high irrespective of fire size. Senescence was more important than high-frequency fire as a cause of extinction in cells. Interactions between dispersal, fire frequency, and size were complex, indicating that extinction is governed by intercell connectivity. The model indicates that fire patchiness cannot be assumed to ensure avoidance of extinction of populations. Conservation of populations is most likely when fire patchiness is relatively low—when the size of fires is moderate to large and when burned patches are contiguous.  相似文献   

6.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

7.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

8.
Abstract:  Many wide-ranging mammal species have experienced significant declines over the last 200 years; restoring these species will require long-term, large-scale recovery efforts. We highlight 5 attributes of a recent range-wide vision-setting exercise for ecological recovery of the North American bison ( Bison bison ) that are broadly applicable to other species and restoration targets. The result of the exercise, the "Vermejo Statement" on bison restoration, is explicitly (1) large scale, (2) long term, (3) inclusive, (4) fulfilling of different values, and (5) ambitious. It reads, in part, "Over the next century, the ecological recovery of the North American bison will occur when multiple large herds move freely across extensive landscapes within all major habitats of their historic range, interacting in ecologically significant ways with the fullest possible set of other native species, and inspiring, sustaining and connecting human cultures." We refined the vision into a scorecard that illustrates how individual bison herds can contribute to the vision. We also developed a set of maps and analyzed the current and potential future distributions of bison on the basis of expert assessment. Although more than 500,000 bison exist in North America today, we estimated they occupy <1% of their historical range and in no place express the full range of ecological and social values of previous times. By formulating an inclusive, affirmative, and specific vision through consultation with a wide range of stakeholders, we hope to provide a foundation for conservation of bison, and other wide-ranging species, over the next 100 years.  相似文献   

9.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   

10.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

11.
Historic Fire Regime in Southern California Shrublands   总被引:5,自引:0,他引:5  
  相似文献   

12.
There is mounting evidence that fire size and severity have been growing on the central and southern California coastal landscape over the past several decades. Landsat satellite data was analyzed for the 20 largest fires on the Central California coast since 1984 to determine the relationships between climate/weather conditions at the time of ignition and the size of high burn severity (HBS) areas. The study also examined the relationship between area burned and landscape patterns of HBS coverage, including patch size, edge complexity, perimeter-to-area ratio, and aggregation metrics. Results showed that climate conditions at the time of ignitions have been significant controllers of the total area of HBS and the complexity of HBS patches on the fire landscape. As maximum air temperatures for the month of ignition approached 40o C, the percentage of HBS to total area burned frequently exceeded 20%. The percentage of HBS to total area burned also exceed 20% when the precipitation total recorded during the previous 12 months was less than 25% of the annual average precipitation. Landscape analysis results showed that, as the total area burned in fires on the Central California coast grows, the edge lengths and areas of HBS patches also grows at a rapid rate. At the same time, the perimeter-to-area ratio of HBS patches decreases gradually and the HBS patches become more aggregated as total burned area grows.  相似文献   

13.
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.  相似文献   

14.
15.
The eastern Mediterranean region has been subjected to intensive human disturbance in the past 10,000 years, mainly in the forms of agro-pastoral activities such as grazing, shrub clearing, and prescribed burning. This disturbance history resulted in the formation of highly heterogeneous landscapes, characterized by high biodiversity. Recent changes in human activities have resulted in a decrease of landscape heterogeneity, leading to decreasing biodiversity and increasing fire risk. To conserve heterogeneity, land managers apply disturbance based management practices, using the same activities that created and maintained landscape heterogeneity in the past. However, the long-term and large-scale outcomes of these disturbances are often unknown, due to the complex response of Mediterranean vegetation to disturbance. Here we report on a spatially explicit, hybrid, and spatially hierarchical ecological model developed by us. The model attempts to predict the outcome of various disturbance based management activities on the long-term spatio-temporal dynamics of five common Mediterranean vegetation types. The model uses a spatially explicit state and transition formulation, with continuous transition functions. Model simulations were conducted on a Mediterranean landscape in Northern Israel, incorporating various disturbance practices that are common in the region. Simulation results highlight the potential of disturbance based management as a tool for conserving landscape heterogeneity, as well as the complex interactions between disturbances and the spatial structure of the landscape in Mediterranean regions.  相似文献   

16.
Abstract: We developed the landscape age-class demographics simulator ( LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the landscape. Parameters describing historical fire regimes were derived from data from a number of existing dendroecological and paleoecological studies. Our results indicated that the historical age-class distribution was highly variable and that variability increased with decreasing landscape size. Simulated old-growth percentages were generally between 25% and 75% at the province scale (2,250,000 ha) and never fell below 5%. In comparison, old-growth percentages varied from 0 to 100% at the late-successional reserve scale (40,000 ha). Province-scale estimates of current old-growth (5%) and late-successional forest (11%) in the Oregon Coast Range were lower than expected under the simulated historical fire regime, even when potential errors in our parameter estimates were considered. These uncertainties do, however, limit our ability to precisely define ranges of historical variability. Our results suggest that in areas where historical disturbance regimes were characterized by large, infrequent fires, management of forest age classes based on a range of historical variability may be feasible only at relatively large spatial scales. Comprehensive landscape management strategies will need to consider other factors besides the percentage of old forests on the landscape, including the spatial pattern of stands and the rates and pathways of landscape change.  相似文献   

17.
Abstract:  Large wild fires occurring in forests, grasslands, and chaparral in the last few years have aroused much public concern. Many have described these events as "catastrophes" that must be prevented through aggressive increases in forest thinning. Yet the real catastrophes are not the fires themselves but those land uses, in concert with fire-suppression policies that have resulted in dramatic alterations to ecosystem structure and composition. The first step in the restoration of biological diversity (forest health) of western landscapes must be to implement changes in those factors that have caused degradation or are preventing recovery. This includes changes in policies and practices that have resulted in the current state of wildland ecosystems. Restoration entails much more than simple structural modifications achieved though mechanical means. Restoration should be undertaken at landscape scales and must allow for the occurrence of dominant ecosystem processes, such as the natural fire regimes achieved through natural and/or prescribed fires at appropriate temporal and spatial scales.  相似文献   

18.
Abstract:  Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A).. We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.  相似文献   

19.
《Ecological modelling》2003,165(1):23-47
This paper describes the development, evaluation, and use of a model that simulates the effect of grazing and fire on temporal and spatial aspects of sagebrush community vegetation and sage grouse population dynamics. The model is represented mathematically as a discrete-time, stochastic compartment model based on difference equations with a time interval of 1 week. In the model, sheep graze through sage grouse breeding habitat during spring and fall, and different portions of the area can burn at different frequencies, creating a habitat mosaic of burned and unburned areas.The model was evaluated by examining predictions of (1) growth of sagebrush canopy cover after fire, (2) seasonal dynamics of grass and forb biomass under historical environmental conditions, and (3) sage grouse population dynamics associated with selected sagebrush canopy covers. Simulated changes in sagebrush canopy cover following fire correspond well with qualitative reports of long-term trends, simulated seasonal dynamics of herbaceous biomass correspond well with field data, and simulated responses of sage grouse population size and age structure to changing sagebrush canopy cover correspond well to qualitative field observations.Simulation results suggest that large fires occurring at high frequencies may lead to the extinction of sage grouse populations, whereas fires occurring at low frequencies may benefit sage grouse if burned areas are small and sheep grazing is absent. Sheep grazing may contribute to sage grouse population decline, but is unlikely to cause extinction under fire regimes that are favorable to sage grouse.  相似文献   

20.
Abstract:  The contemporary southwestern United States is characterized by fire-adapted ecosystems; large numbers of federally listed threatened and endangered species; a patchwork of federal, state, and private landownership; and a long history of livestock grazing as the predominant land use. I compared eight sites in southern Arizona and New Mexico to assess the interacting effects of these characteristics on conservation practices and outcomes. There was widespread interest and private-sector leadership in restoring fire to southwestern rangelands, and there is a shortage of predictive scientific knowledge about the effects of fire and livestock grazing on threatened and endangered species. It was easier to restore fire to lands that were either privately owned or not grazed, in part because of obstacles created by threatened and endangered species on grazed public lands. Collaborative management facilitated conservation practices and outcomes, and periodic removal of livestock may be necessary for conservation, but permanent livestock exclusion may be counterproductive because of interactions with land-use and landownership patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号