首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
铁碳微电解及沸石组合人工湿地的废水处理效果   总被引:1,自引:1,他引:0  
铁碳微电解填料和沸石由于对废水中污染物具有良好的处理效果,因而被作为基质逐渐运用于人工湿地中.本研究构建了铁碳微电解填料+砾石(湿地A)、铁碳微电解填料+沸石(湿地B)、沸石(湿地C)以及砾石(湿地D)为基质的4组人工湿地,并利用间歇曝气对湿地系统进行增氧,探究不同填料对人工湿地废水处理效果的影响.结果表明,与湿地D相比,铁碳微电解填料显著提高了湿地出水的溶解氧含量(DO)(P<0.05)和pH(P<0.05);4组人工湿地对有机物的去除率均达到95%以上,且各组间不存在显著性差异(P>0.05);对TN而言,湿地A、B和C的平均去除率分别比湿地D提高了7.94%(P<0.05)、9.29%(P<0.05)和3.63%(P<0.05),铁碳微电解填料和沸石对提升人工湿地TN去除效果的贡献率分别为73.55%和26.45%;各组湿地对NH4+的平均去除率为67.93%~76.90%,与湿地D相比,其它3组湿地均明显改善了NH4+的去除效果(P<0.05);铁碳微电解填料对湿地NO3-的去除效果极佳,去除率高达99%以上,显著高于不添加铁碳微电解的人工湿地系统(P<0.05).综合对碳氮污染物的处理效果来看,湿地B在间歇曝气的条件下对人工湿地中污染物去除效率最高.  相似文献   

2.
于2015年1月(冬季)、4月(春季)、6月(夏季)和9月(秋季),以闽江河口互花米草沼泽湿地为研究区,采用静态箱与气相色谱结合的方法,研究螃蟹对湿地土壤CO2、CH4和N2O排放通量及综合增温潜势的影响。研究表明:温室气体排放季节变化较为显著,CO2、CH4排放通量最大值均出现在夏季,N2O排放通量最大值出现在秋季,CO2、CH4和N2O排放通量最小值均出现在春季。与无螃蟹组相比,高潮滩和中潮滩螃蟹组CO2、CH4和N2O排放通量均值都增大,其中高潮滩螃蟹组CO2、CH4和N2O排放通量依次增大了46.36%、66.67%和69.66%,中潮滩螃蟹组CO2、CH4和N2O排放通量依次增大了53.57%、142.97%、73.08%。相关性分析结果表明:土壤CO2排放通量与土壤温度显著正相关(n=96,p<0.05),CH4和N2O排放通量与土壤温度显著正相关(n=96,p<0.01);N2O排放通量与土壤pH显著正相关(n=96,p<0.01),与土壤含水量显著正相关(n=96,p<0.05)。综上所述,螃蟹活动对闽江河口互花米草沼泽湿地土壤的干扰促进了温室气体的排放,为有效调节湿地碳、氮固持作用和湿地生态系统科学管理提供了参考。  相似文献   

3.
以南方稻区不同轮作模式为研究对象,采用静态箱-气相色谱法研究水稻-油菜轮作处理的甲烷(CH4)和氧化亚氮(N2O)排放特征,并估算稻田增温潜势(GWP)和温室气体排放强度(GHGI).结果表明,双季稻田、一季中(晚)稻田、油菜地和休闲地CH4平均排放量分别为135.25,55.64、5.05和1.89 kg ·hm-2,稻季CH4排放占不同轮作周年CH4排放的91.8%~98.5%,稻田土壤水溶性有机碳与CH4排放呈显著正相关,常规晚稻稻田CH4排放比杂交晚稻高18.7%(P<0.05);双季稻田、一季中(晚)稻田、油菜地和休闲地N2O平均排放量分别为0.94、0.64、1.38和0.24 kg ·hm-2,油菜地的N2O排放占周年排放的57.2%~70.2%,双季稻和一季稻处理的冬闲农田N2O排放占周年排放的17.8%和30.6%,杂交稻和常规稻稻田N2O排放无显著性差异;双季稻-冬闲和双季稻-油菜的GWP处理高于稻-油和稻-冬闲处理,稻季排放CH4的GWP占轮作周年GWP排放的71.2%~90.9%;GHGI以稻-稻-油菜最高,稻-油和稻-冬闲处理较低,综合环境效益和经济效益,建议南方稻区选择杂交晚稻-油菜的种植模式,有利于南方多熟制稻田的温室气体减排.  相似文献   

4.
草坪作为城市绿地的重要组成部分,其温室气体的吸收或排放不容忽视.然而当前对亚热带城市草坪温室气体通量的研究相对匮乏.采用静态箱-气相色谱法,对杭州市城区典型城市草坪的多种温室气体(CO2、CH4、N2O和CO)地气交换通量进行了连续观测研究.结果表明,城市草坪的温室气体月平均通量变化明显,而其日变化特征并不明显.城市草地和土壤(无植被生长的裸土)是大气N2O的源,平均通量分别为(0.66±0.17)μg·(m2·min)-1和(0.58±0.20)μg·(m2·min)-1;是CH4和CO的汇,其中CH4平均通量分别为(-0.21±0.078)μg·(m2·min)-1和(-0.26±0.10)μg·(m2·min)-1,CO分别为(-6.36±1.28)μg·(m2·min)-1和(-6.55±1.69)μg·(m2·min)-1.城市草地和土壤CO2平均通量分别为(5.28±0.75) mg·(m2·min)-1和(4.83±0.91) mg·(m2·min)-1.基于相关性分析研究发现,草地和土壤的CO2和N2O通量均与降水量呈显著的负相关,而CH4和CO通量与降水量呈显著的正相关;除草地CH4通量与土壤温度无显著相关、草地N2O通量与土壤温度呈显著负相关外,其余各温室气体通量与土壤温度均呈显著正相关.另外,城市草坪的草地和土壤CO2R2为0.371和0.314)和N2O (R2为0.371和0.284)通量季节变化受降水量的影响要大于其它温室气体,而土壤温度对CO通量的影响(R2为0.290和0.234)要显著于其它温室气体.  相似文献   

5.
施用不同污泥堆肥品对土壤温室气体排放的影响   总被引:3,自引:1,他引:2  
杨雨浛  易建婷  张成  陈宏  木志坚 《环境科学》2017,38(4):1647-1653
通过田间试验,分别施加两种不同的污泥堆肥品(A:含生物质炭堆肥品,B:不含生物质炭堆肥品)和不同施肥量,分析土壤CO2、CH4和N2O动态变化特征和排放系数,研究施用污泥堆肥品对土壤温室气体排放的影响.结果表明,土壤CO2和CH4排放主要集中在生长期,生物质炭堆肥品低施用量能减少CO2排放,而高施肥量增加CO2排放.CH4排放主要为负值,总体表现为土壤吸收CH4,对照处理吸收量远高于其他处理(P<0.01),A组处理CH4吸收量随施肥量的增加而增加(P<0.05).N2O排放集中在发芽期和幼苗期,施肥量越高,排放量越大(P<0.01).污泥堆肥品农用过程排放的温室气体主要是N2O,施用A、B两种污泥堆肥品的土壤N2O排放系数分别为1.02%~1.90%和1.28%~2.93%.生物质炭堆肥品具有显著的碳减排效果,其温室气体排放量比不含生物质炭堆肥品的土壤低19.49%~35.56%,且对于N2O的减排效果较CH4更为显著.  相似文献   

6.
根据典型城市调查与统计数据收集得到的广东省活动水平数据,采用自上而下和自下而上相结合的排放因子法和GIS技术,建立了广东省2018年3 km×3 km高分辨率温室气体排放清单.估算范围包括能源活动、工业生产过程、农业活动、土地利用变化和林业、废弃物处理以及电力调入(出)间接排放等6大类CO2、CH4和N2O这3种温室气体.结果表明,广东省2018年CO2、CH4和N2O的排放量分别为8.5×108、1.9×106和1.1×105 t,以CO2当量计分别为8.5×108、4.0×107和3.4×107 t,合计9.2×108 t.CO2是广东省主要的温室气体排放种类,占全省温室气体总排放量的92.0%,能源活动和电力调入(出)间接排放是广东省温室气体排放的主要部门,排放占比分别为77.9%和7.6%,合计占比为85.5%.从温室气体排放的空间分布情况来看,全省大部分地区温室气体表现为排放源,部分区域表现为汇;温室气体排放主要集中在珠三角地区,并呈现一定的沿路网和航道分布的特征;温室气体高排放网格主要为大型电厂、钢铁厂和水泥厂等高耗能企业所在地.  相似文献   

7.
植物入侵是河口湿地土壤碳(C)、氮(N)、磷(P)循环的主要驱动因素.为了探讨福建闽江河口互花米草入侵短叶茳芏湿地对碳输入和 碳排放的影响,对土壤C、N、P含量和储量及CH4和CO2排放进行了测定与分析.结果表明:①互花米草入侵短叶茳芏湿地显著增加了0~60 cm土壤C、N含量和0~15 cm土壤P含量(p<0.05).②互花米草入侵短叶茳芏湿地后,0~60 cm土壤C、N、P储量分别增加了16%、46%、26%(p<0.05).③互花米草入侵短叶茳芏湿地后,0~15 cm和15~30 cm土壤C/N显著降低了33%和24%,15~30 cm土壤C/P降低了31%(p<0.05).④互花米草入侵短叶茳芏湿地显著增加了CH4和CO2平均和累积排放(p<0.05).⑤土壤C、N、P与土壤CO2和CH4排放呈显著正相关(p<0.05,p<0.01),微生物生物量碳(MBC)与土壤CH4排放呈显著正相关(p<0.01),土壤C/N与土壤CH4排放呈显著负相关(p<0.05).综合来看,互花米草入侵闽江 河口短叶茳芏湿地增强了土壤C、N、P的固持和CH4、CO2的排放,并受到生态化学计量比的调节.本研究拓展了对植物入侵情形下河口湿地 生物地球化学循环的认知.  相似文献   

8.
为了探讨地膜覆盖对菜地垄沟温室气体CH4和N2O排放的影响,以位于西南大学农业部重庆紫色土生态环境重点野外科学观测试验站内辣椒-萝卜轮作菜地为研究对象,采用静态暗箱/气相色谱法,进行为期1 a的田间原位观测.本试验设置常规和覆膜两种处理方式,研究地膜覆盖对菜地垄沟中CH4和N2O排放的影响.结果表明,地膜覆盖能极显著提高土壤全年pH(P<0.01),显著提高全年的地表温度和地下5 cm温度(P<0.05),显著提高萝卜季土壤含水率(P<0.05).不论是辣椒季还是萝卜季,覆膜显著降低了垄的CH4排放(P<0.05),辣椒季垄的CH4平均排放通量常规和覆膜处理分别为0.110 mg·(m2·h)-1和0.028 mg·(m2·h)-1,萝卜季分别为0.011 mg·(m2·h)-1和-0.019 mg·(m2·h)-1,但覆膜对沟的CH4排放没有显著影响(P>0.05),辣椒季常规和覆膜处理分别为0.058 mg·(m2·h)-1和0.057 mg·(m2·h)-1,萝卜季分别为0.083 mg·(m2·h)-1和0.092 mg·(m2·h)-1,对比垄和沟,除了辣椒季常规处理下垄CH4排放量显著高于沟,其它均为沟显著高于垄,这与西南地区较高的降雨量下沟内较稳定的缺氧环境有关.覆膜处理对N2O没有显著影响,辣椒季垄N2O的平均排放通量常规和覆膜处理下分别为65.41 μg·(m2·h)-1和68.39 μg·(m2·h)-1,萝卜季分别为78.43 μg·(m2·h)-1和66.19 μg·(m2·h)-1,辣椒季沟N2O的平均排放通量分别为19.82 μg·(m2·h)-1和22.85 μg·(m2·h)-1,萝卜季分别为35.80 μg·(m2·h)-1和40.00 μg·(m2·h)-1,均无显著差异(P>0.05),对比垄和沟,垄N2O的排放量显著高于沟,N2O主要由垄向大气排放.CH4排放通量与地表及地下5 cm温度呈显著正相关,N2O的排放通量仅与碱解氮和铵态氮含量呈显著正相关.  相似文献   

9.
氧化亚氮(N2O)是《京都议定书》规定的6种温室气体之一,其百年增温趋势是CO2的298倍,大气N2O浓度在持续快速增长中.浅水湖泊是大气N2O的重要来源,为探讨富营养湖泊太湖N2O排放的时空变化及潜在驱动因素,于2月(冬)和8月(夏)不同季节下在太湖进行野外观测,采用扩散系数-顶空瓶法观测表层水体N2O浓度[c(N2O)]和排放通量[F(N2O)],并讨论分析N2O排放的潜在驱动因素.由于溶解性有机物(DOM)光谱是溶解性有机碳(DOC)及溶解性有机氮(DON)来源组成的有效示踪指标,其迁移转化过程亦会释放大量无机氮,改变水体氧化还原电位,因而也能影响N2O排放.结果表明,太湖表层水体N2O的浓度和排放通量表现出的时间变化及空间变化强烈受到季节(水温)差异和营养水平的共同影响,其表层水体c(ČN2O)均值为(19.7±2.7) nmol·L-1,F(N2O)均值为(41.1±1.8)μmol·(m2·d)-1,两者均表现为夏季高于冬季(t-test,P<0.01);DOM和DOC等有机质的输入累积能够提高水体N2O的产生和排放潜力,其中N2O排放通量与水体类腐殖质组分C1显著正相关,表征陆源输入的荧光峰积分比值ICIT及芳香性指标S275-295都表明西北入湖河口区积累了大量陆源类腐殖酸,其转化降解对N2O的产生及排放有较大的贡献.结果显示水温、DOM组成来源和营养水平等均是影响太湖水体N2O排放的重要因素.长期连续观测能更好地全面评估各种因素对水体N2O产生及排放的影响并科学合理地制定减排方案.  相似文献   

10.
椰糠生物炭对热区双季稻田N2O和CH4排放的影响   总被引:3,自引:1,他引:2  
基于稻菜轮作模式,选择海南双季稻田为对象进行氧化亚氮(N2O)和甲烷(CH4)排放的原位监测,探究椰糠生物炭对该系统稻田温室气体排放的影响.试验设当地常规施肥对照(CON)、氮肥配施20 t·hm-2生物炭(B1)、氮肥配施40 t·hm-2生物炭(B2)及不施氮对照(CK)4个处理,采用静态箱-气相色谱法监测整个水稻种植季稻田N2O和CH4排放,并估算增温潜势(GWP)和温室气体排放强度(GHGI).结果表明,早稻季N2O排放动态与土壤矿质氮含量密切相关,排放集中在水稻苗期与分蘖期施肥后,各处理早稻季N2O累积排放量为0.18~0.76 kg·hm-2,相较于CON处理,生物炭处理减排18%~43%,其中B2处理达显著水平;生物炭可能通过促进N2O的还原减少早稻苗期N2O排放;提高土壤硝态氮含量而增加了早稻分蘖期N2O排放.晚稻季N2O排放集中在抽穗期和成熟期,累积排放量为0.17~0.34 kg·hm-2,B1处理减排37%,B2增加3%,差异均不显著.稻田CH4排放高峰出现在早稻季后期与晚稻季前期.各处理早稻季CH4累积排放量为3.11~14.87 kg·hm-2,CK较CON处理增排39%,生物炭处理可能提高土壤通气性限制早稻季产CH4能力,B1和B2处理分别较CON减排28%和71%;晚稻季CH4累积排放量为53.1~146.3 kg·hm-2,排放动态与NH4+-N含量极显著正相关,CK和B1分别较CON处理增加52%和99%,B2处理显著增加176% CH4排放.早稻季B1和B2处理较CON分别增产12.0%和14.3%,晚稻季分别增产7.6%和0.4%.由于晚稻季甲烷排放的增加,施用生物炭增加了双季稻田总增温潜势(GWP),其中高量生物炭达显著水平;不同施用量生物炭对双季稻田温室气体排放强度(GHGI)无显著影响.椰糠生物炭在热区稻田温室气体减排方面的应用仍需进一步研究.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

16.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

17.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

18.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号