首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation.
Graphical abstract ?
  相似文献   

2.
Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation.  相似文献   

3.
Environmental Science and Pollution Research - Biochar has been applied widely as an amendment in the remediation of contaminated soil to immobilize the heavy metals. However, the role of...  相似文献   

4.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

5.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

6.
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (>50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550°C with a heating rate of 5°C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However, executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550°C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg.
ImplicationsA remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.  相似文献   

7.
粘土矿物修复重金属污染土壤   总被引:27,自引:1,他引:27  
简要介绍了我国土壤重金属污染的现状与危害.通过粘土矿物在重金属污染土壤中净化功能的阐述,提出利用粘土矿物修复土壤重金属污染的观点.继而从天然和改性粘土矿物特性,叙述了粘土矿物修复土壤重金属污染的机制与应用进展及其影响因素.最后讨论了粘土矿物在修复土壤重金属污染过程中值得注意的几个问题,并展望了粘土矿物在该领域应用中的发展方向.  相似文献   

8.
Chemical pollution of the environment has become a major source of concern. Studies on degradation of organic compounds have shown that some microorganisms are extremely versatile at catabolizing recalcitrant molecules. By harnessing this catabolic potential, it is possible to bioremediate some chemically contaminated environmental systems. Composting matrices and composts are rich sources of xenobiotic-degrading microorganisms including bacteria, actinomycetes and lignolytic fungi, which can degrade pollutants to innocuous compounds such as carbon dioxide and water. These microorganisms can also biotransform pollutants into less toxic substances and/or lock up pollutants within the organic matrix, thereby reducing pollutant bioavailability. The success or failure of a composting/compost remediation strategy depends however on a number of factors, the most important of which are pollutant bioavailability and biodegradability. This review discusses the interactions of pollutants with soils; look critically at the clean up of soils contaminated with a variety of pollutants using various composting strategies and assess the feasibility of using composting technologies to bioremediate contaminated soil.  相似文献   

9.
The amendment of carbonaceous materials such as biochars and activated carbons is a promising in situ remediation strategy for both organic and inorganic contaminants in soils and sediments. Mechanistic understandings in sorption of heavy metals on amended soil are necessary for appropriate selection and application of carbonaceous materials for heavy metal sequestration in specific soil types. In this study, copper sorption isotherms were obtained for soils having distinct characteristics: clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. The amendment of acidic pecan shell-derived activated carbon and basic broiler litter biochar lead to a greater enhancement of copper sorption in Norfolk soil than in San Joaquin soil. In Norfolk soil, the amendment of acidic activated carbon enhanced copper sorption primarily via cation exchange mechanism, i.e., release of proton, calcium, and aluminum, while acid dissolution of aluminum cannot be ruled out. For San Joaquin soil, enhanced copper retention by biochar amendment likely resulted from the following additional mechanisms: electrostatic interactions between copper and negatively charged soil and biochar surfaces, sorption on mineral (ash) components, complexation of copper by surface functional groups and delocalized π electrons of carbonaceous materials, and precipitation. Influence of biochar on the release of additional elements (e.g., Al, Ca) must be carefully considered when used as a soil amendment to sequester heavy metals.  相似文献   

10.
Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar’s surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar’s surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd.  相似文献   

11.
EDTA强化电动力学修复重金属复合污染土壤   总被引:2,自引:0,他引:2  
在自制的电动力学装置中,研究多种重金属复合污染土壤的电动力学修复,通过在阴极添加络合剂EDTA来提高修复效率。实验结果表明,EDTA的引入提高了修复过程中的电流值,且EDTA与重金属的络合提高了污染物向电极液的迁移效率,从而强化了电动力学修复效果。在设定的浓度(0、0.01、0.02、0.05和0.1 mol/L)中,0.1 mol/L的EDTA具有最佳的修复效率。在此实验条件下,污染土壤中的总铜、总铅和总镉的去除率分别为90.2%、68.1%和95.1%。电动力学修复后,对土壤重金属进行化学形态分析,发现电动力学修复显著改变了土壤重金属存在形态,修复后土壤中的铜、铅、镉主要以较稳定的有机态和残余态形式存在,显著降低了对周边生物和环境的毒害。  相似文献   

12.
土壤重金属复合污染及其化学钝化修复技术研究进展   总被引:77,自引:3,他引:74  
土壤重金属污染往往是2种或2种以上的多种重金属并存的复合污染。与单一污染相比,重金属复合污染中元素或化合物之间存在相互作用以及对生态效应的综合影响,对其污染土壤的修复具有挑战性。目前,土壤重金属污染的修复主要集中在单一元素上,而对土壤多种重金属并存的复合污染的同时修复研究较少。化学钝化修复是基于向土壤中添加稳定化剂,通...  相似文献   

13.
用水生生物对重金属污染土壤进行生态毒理评价   总被引:1,自引:0,他引:1  
应用斜生栅藻(Scenedesmus obliquus)和明亮发光杆菌T3(Photobacterium phosphoreum)急性毒性实验方法对重金属污染土壤的进行生态毒理评价,结果表明,斜生栅藻的生长繁殖率和发光菌的相对发光度与土壤中的重金属含量明显相关,并且随重金属投加量的增加,其生长繁殖率和发光度逐渐降低。对3种测试参数进行比较可知,斜生栅藻细胞数增长率是最敏感的土壤毒性检测指标。土壤的毒性在复合污染的条件下比在单一污染的条件下高很多。本研究的结果可以为污染土壤的优先修复提供理论依据。  相似文献   

14.
Background Phytoremediation is a promising technology for the cleanup of polluted environments. The technology has so far been used mainly to remove toxic heavy metals from contaminated soil, but there is a growing interest in broadening its applications to remove/degrade organic pollutants in the environment. Both plants and soil microorganisms have certain limitations with respect to their individual abilities to remove/breakdown organic compounds. A synergistic action by both rhizosphere microorganisms that leads to increased availability of hydrophobic compounds, and plants that leads to their removal and/or degradation, may overcome many of the limitations, and thus provide a useful basis for enhancing remediation of contaminated environments.Main Features The review of literature presented in this article provides an insight to the nature of plant-microbial interactions in the rhizosphere, with a focus on those processes that are relevant to the breakdown and/or removal of organic pollutants. Due consideration has been given to identify opportunities for utilising the plant-microbial synergy in the rhizosphere to enhance remediation of contaminated environments.Results and Discussion The literature review has highlighted the existence of a synergistic interaction between plants and microbial communities in the rhizosphere. This interaction benefits both microorganisms through provision of nutrients by root exudates, and plants through enhanced nutrient uptake and reduced toxicity of soil contaminants. The ability of the plant-microbial interaction to tackle some of the most recalcitrant organic chemicals is of particular interest with regard to enhancing and extending the scope of remediation technologies.Conclusions Plant-microbial interactions in the rhizosphere offer very useful means for remediating environments contaminated with recalcitrant organic compounds.Outlook A better knowledge of plant-microbial interactions will provide a basis for improving the efficacy of biological remediations. Further research is, however, needed to investigate different feedback mechanisms that select and regulate microbial activity in the rhizosphere.  相似文献   

15.
用水生生物对重金属污染土壤进行生态毒理评价   总被引:1,自引:0,他引:1  
应用斜生栅藻(Scenedesmusobliquus)和明亮发光杆菌T3(Photobacteriumphosphoreum)急性毒性实验方法对重金属污染土壤的进行生态毒理评价,结果表明,斜生栅藻的生长繁殖率和发光菌的相对发光度与土壤中的重金属含量明显相关,并且随重金属投加量的增加,其生长繁殖率和发光度逐渐降低。对3种测试参数进行比较可知,斜生栅藻细胞数增长率是最敏感的土壤毒性检测指标。土壤的毒性在复合污染的条件下比在单一污染的条件下高很多。本研究的结果可以为污染土壤的优先修复提供理论依据。  相似文献   

16.
Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 °C and 700 °C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 °C generally showed a greater ability at enhancing a soil’s sorption ability than that prepared at 350 °C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar.  相似文献   

17.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

18.
Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.  相似文献   

19.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

20.
重金属污染土壤植物修复及进展   总被引:4,自引:0,他引:4  
土壤污染是当今面临的一个重要环境问题。常规的土壤污染物理化学治理技术 ,如客土换土法、冲洗法、热处理、固化、玻璃化、动电修复法等 ,由于其技术要求高或经济成本高昂 ,对土壤结构的扰动破坏较严重 ,因而 ,大规模推广应用存在较大问题。重金属超累积植物的不断发现 ,使人们认识到有可能利用植物于土壤污染的治理修复。自 2 0世纪 90年代起 ,植物修复成为环境污染治理研究领域的一个前沿性课题。研究表明 ,通过植物的吸收、挥发、根滤、稳定等作用 ,可以净化土壤或水体中金属污染物 ,达到净化环境的目的。近 10年来 ,在超累积植物的找寻培育、植物根际微生物共存体系研究、植物对重金属的耐忍性、超量吸收及其解毒机制以及植物修复的工艺技术方面已有不少研究 ,并取得长足的进展 ,现代分子生物学的发展以及基因工程技术的应用有可能使植物修复技术取得根本性的突破。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号