首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为提高含油污泥的生物降解效率,通过混合菌剂强化堆肥法处理含油污泥的小试试验,采用GC-MS图谱分析技术对石油烃中正构烷烃、藿烷、甾烷的降解规律进行分析.结果表明:7%的油泥经微生物强化堆肥处理49 d后降解率在85%以上.石油烃中3种系列的降解难易顺序为正构烷烃>藿烷>甾烷,从降解规律来看,微生物降油复合菌剂对高碳数正构烷烃的平均降解率(75.55%)大于对低碳数正构烷烃的平均降解率(62.98%),说明总石油烃中降解率最大的是正构烷烃.微生物降油复合菌剂对藿烷的降解率在90%以上,其对22S-31,32,33,34-四升藿烷的降解率最高.微生物降油复合菌剂能够促进孕甾烷的转化,且对重排甾烷的降解效果较明显,对甾烷类化合物中4-甲基-24-乙基-胆甾烷的降解效果最好.微生物降油复合菌剂对正构烷烃的奇偶碳降解优势不明显;藿烷的立体构型转化参数大于甾烷的立体构型转化参数,这也解释了藿烷的降解易于甾烷的原因.研究显示,微生物降油复合菌剂对石油烃中正构烷烃、藿烷、甾烷的降解效果均较好.   相似文献   

2.
为了提高石油污染土壤的生物降解效率,以甲基丙烯酸丁酯制备的树脂为载体吸附石油降解菌进行生物降解,利用GC-MS“指纹图谱”对TPH(total petroleum hydrocarbon,总石油烃)的降解程度及生物演化特性进行分析.结果表明:树脂吸附菌剂后TPH的半衰期为24.23 d,比单纯菌剂降解缩短7.28 d;其中正构烷烃的降解性能表明,高碳数高达92.03%,中、低碳数皆超过75%,高于TPH的56.67%,较好地解释了TPH降解率比单纯菌剂提高的内在原因;在演化特征方面,正构烷烃的生物演化参数——w(∑C21)/w(∑C22+)(C21-、C22+分别指C14~C21和C22~C39)、姥植比〔w(pr)/w(ph)〕和OEP(奇/偶碳数质量比)分别为0.643 3、0.486 5和1.111 9,均高于单纯菌剂演化程度.研究显示,树脂吸附菌剂后对较难降解的偶数碳正构烷烃和类异戊二烯烃类物质的氧化还原能力增强,从生物演化的角度有力地佐证了降解的优势所在.   相似文献   

3.
生物菌剂对石油污染土壤生物修复作用的研究   总被引:4,自引:0,他引:4  
在实验室条件下,研究了生物菌剂的投加量、投加方式及环境温度对石油污染土壤的修复作用 结果表明,土壤中石油烃的降解效果与生物菌剂的投加量呈正相关,当生物菌剂投加量为0.6mg·kg-1时,修复,48 d 后,石油烃的降解率为87%.GC-MS分析结果表明,石油污染原土中烷烃的含量最高为82.1%其次为烯烃,含量为16%,还含有少量的胡萝卜烷、烷基萘、甾烷和藿烷% 添加生物菌剂修复40 d 后,峰的数量由32个减少为14个,表明异构烷烃、烯烃、胡萝卜烷全部被降解,残留的物质为较难降解的正构烷烃、藿烷和甾烷,呈现前高后低的峰形,即接种细菌优先降解高碳组分,将长链的烷烃降解为短链的烷烃,随着生物菌剂投加量的增加,土壤中残留石油烃的含量逐渐降低% 一次加入生物菌剂修复,48 d后的峰高明显低于分2 次加入的相应值,故一次性全部加入生物菌剂是最佳的投加方式% 温度是限制石油污染土壤生物修复的重要环境因素,当温度为30℃第,48 d 的降解率可达80%,当温度为20℃,第,48 d的降解率可达60%,温度高有利于土壤中石油烃的降解,加快修复  相似文献   

4.
石油烃类生物降解产物形成胶质的过程与胶质的再降解过程交织,增加了原油生物转化过程的复杂度.以往对胶质组分辨识不足,使地表环境下石油污染物的稠化机制阐释薄弱及生物修复效率难以提高.本文利用从稠油污泥中筛选到的石油降解菌威尼斯不动杆菌(Acinetobacter venetianus)进行了原油混合物与胶质单族组分的生物降解模拟实验,利用傅立叶变换离子回旋共振质谱(FT-ICR MS)测定胶质组分,按照氧原子数量进行分类,聚焦氧原子数量为O2类极性化合物在石油烃生物降解过程中的响应变化及再转化机制,进一步揭示胶质组分的好氧生物降解作用机理.研究发现:在威尼斯不动杆菌(Acinetobacter venetianus)降解作用下,20、40及60 d不同时段原油饱和烃的总降解率分别为36.02%、43.46%和52.84%,其中正构烷烃、三环萜烷、藿烷、甾烷和二环倍半萜烷类化合物均有降解;60 d时芳烃中萘、菲、芴、联苯及三芳甾烷系列化合物的降解率分别为56.58%、63.46%、49.84%、59.47%及40.69%,生物降解明显;原油混合物及胶质单族组分中O2类化合物变化复杂,形成与降解同步发生,脂肪酸和单环环烷酸随着时间延长明显增加;类异戊二烯酸、饱和脂肪酸、1~3环环烷酸、藿烷酸及多环环烷酸或芳香酸均为原油混合物中饱和烃及芳烃生物降解产物对于胶质组分的贡献,也是原油中O2类极性组分对饱和烃及芳烃类生物降解作用的响应.石油烃形成的高碳数和低碳数酸均可源源不断进入胶质组分中,使原油的碳循环过程与生物修复过程更加复杂.因此,提高原油重质组分中胶质的生物修复效率是突破原油生物修复效率瓶颈的关键.  相似文献   

5.
土壤正构烷烃微生物降解变化实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在石油烃微生物降解的最佳条件下,利用色谱-质谱联用技术分析测定了石油烃中正构烷烃的降解规律.结果表明,正构烷烃的降解最为明显;正构烷烃的降解随着碳数的增加其降解速度逐渐减小;其中C23烷的降解速度与石油烃整体降解速度相当,碳数小于23的正构烷烃降解速度大于石油烃降解速度,碳数大于23的正构烷烃降解速度小于石油烃降解速度;C16~C25的正构烷烃在0~6*!d内降解速度最快,在7~14 d内达到最低值,之后有逐渐上升的趋势;整个正构烷烃的降解符合二级反应动力学规律.   相似文献   

6.
石油降解菌在石油污染生物修复技术中起到非常重要的作用。本研究分别以渤海湾油污区采集的水样,油样,水油泥混合样为材料富集分离石油降解菌,对其进行生理生化及分子生物学鉴定,并采用GC-MS测定烷烃、环烃、芳香烃等石油烃组分的变化。其中3株菌具有较高石油烃降解能力,16SrRNA序列分析表明该3株菌均与不动杆菌属(Acinetobacter)有99%序列相似性,可初步鉴定为不动杆菌属(Acinetobacter)。3株菌的石油烃降解能力依次为Tust-DM21>Tust-DC12>Tust-DW04,对原油成分的降解效果依次为烷烃>芳香烃>环烃。其中菌株Tust-DM21为一株高效石油烃降解菌,28℃于富集培养基培养10 d后,对烷烃(C10~C30)的降解率可达98%,对芳香烃和环烃的降解率达88%。研究表明,Tust-DM21菌株对烷烃,环烃,芳香烃都有较强的降解能力,是一株具有较好开发前景的石油降解菌。  相似文献   

7.
海洋微生物降解石油的研究   总被引:47,自引:2,他引:47  
从青岛近岩海水中分离、筛选到73株细菌和10株真菌,并对其降解石油的能力进行了研究,结果表明,多数菌具有明显的降解石油的能力,部分菌株对短链烷烃正已烷和芳香烃萘具有不同程度的降解能力,其中,有3个菌株对石油的生物降解率分别高达58.35%、62.75%、71.06%。  相似文献   

8.
本文应用不同材料固定海洋石油烃降解菌Alcanivorax sp.97CO-5,考察并比较了其成型、传质、包埋菌体活性和石油降解性能。实验结果表明:2.5%海藻酸钠包埋材料中细菌的增长最为显著,8 d后材料中细菌数量达到1.2×106CFU/g,为初始细菌细胞数量的3.85倍,是最适的固定化材料。固定化菌剂的石油降解实验结果表明,固定化菌剂14 d对石油的净降解率达到34.1%,其石油降解效果优于游离菌体(28.3%);气相色谱质谱联用分析表明,固定化菌剂对石油中总烷烃降解率为57.9%,其中对nC21~nC31的中长链烷烃的降解率可达到54.6%;固定化菌剂相对于游离菌体,对芴(FLU)和二苯并噻吩(DBT)两类烷基化多环芳烃的降解率明显提高,达到44.9%和44.2%,而游离降解菌仅为25.4%和24.7%。实验证明,固定化技术促进了Alcanivorax sp.97CO-5菌体降解性能的发挥尤其是对中长链烷烃和部分芳烃成分的降解。  相似文献   

9.
油田区土壤石油烃组分残留特性研究   总被引:9,自引:1,他引:8  
为了揭示石油开采区土壤石油烃组成及残留特性,探讨石油污染物的来源与风化程度,采集了胜利油田孤岛和河口采油区共5口油井周边土壤样品及原油样品,利用气相色谱-质谱联用仪(GC-MS)分析原油及土壤样品中的链烷烃(正烷烃+姥鲛烷+植烷)及多环芳烃(polycyclic aromatic hydrocarbons,PAHs)共51种石油烃单体的含量.结果表明,与原油相比,油田区土壤总提取物中链烷烃与PAHs所占的比例明显偏低;土壤石油烃的组分构成与原油相比,链烷烃中碳数小于12的正烷烃比例明显降低,而高碳数正烷烃比例增加.选择正十八烷/植烷作为指示土壤风化程度的标志,利用主成分分析(principal component analysis,PCA)法分析其与土壤中各石油烃组分的关系,结果显示碳数大于33的正烷烃与中环芳香烃具有高残留性.利用主成分分析综合分析用于土壤石油烃来源识别的4个指标,结果表明,土壤中的石油烃具有明显的原油"指纹".研究结果为油田土壤污染特性的认识提供了依据与基础.  相似文献   

10.
从石油污染土壤筛选出一株高效石油降解菌JC-106,经细菌形态学、生理生化及16S r DNA序列分析鉴定为赤红球菌(Rhodococcus rubber).在温度15~40℃、初始p H 6~8、盐度0~4%条件下培养生长良好.该菌能利用十二烷、二十四烷、正辛烷、邻苯二酚、蒽、萘为唯一碳源生长.在较低温度下能有效降解原油,在15和35℃培养15 d对原油降解率分别为41.61%和58.18%,GC-MS分析发现原油组分中正构烷烃(C14~C44)降解率达到96.13%.在含1000 mg·L~(-1)原油的人工废水中加入2%(V/V)赤红球菌JC-106菌悬液,采用SBR间歇式活性污泥法处理含油废水,15 d后出水COD、NH_4+-N、TP平均去除率分别为96.49%、96.88%、99.15%,原油去除率为92.43%,对照组原油去除率仅为53.80%.JC-106在含油废水中稳定生长,数量维持在4.8×1010~1.0×1011cfu·mL~(-1)左右.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

18.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号