首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced reburning (AR) is effective for nitrogen oxides (NOx) reduction, which integrates the basic reburning (BR) with the injection of nitrogen agents and additive compounds. The basic reburning of poplar, cornstalk, wheat-straw and peanut shell, is studied on a boiler simulator facility (BSF). The influence of operating parameters and the synergistic effect of the injection of ammonia, urea or/and sodium carbonate on NOx reduction are investigated. The results show that an efficiency of 54–67% NOx reduction could be achieved during the basic reburning process under the optimum operating conditions and the efficiency would be increased if nitrogen agent is injected with the over-fire air or into the burnout zone. Further, co-injection of sodium carbonate with the nitrogen agent could make the NOx reduction process more thorough. On the whole, 85–92% NOx reduction could be achieved during the advanced reburning process with a reburning fuel heat input of 15–20%.  相似文献   

2.
In the Ag(II)/Ag(I) redox mediator integrated scrubber system, NO reacts with the Ag(II) ions produced by the electrochemical oxidation of Ag(I) in an electrochemical cell present in the scrubbing solution (aqueous HNO3 acid) to form NO2. This NO2 is then absorbed into the scrubbing solution and degraded to nitrate. Numerous experimental runs were carried out to evaluate the feasibility of the integrated system to treat industrial waste gases containing high NOx levels. The results showed that the levels of NO and NOx removal increased with increasing Ag(II) loading and contact time. Under optimized conditions, 93.5% and 73.3% of the NO and NOx, respectively, were removed by a single stage gas scrubber with 1.62 g L?1 Ag(II) operating at 25 °C and atmospheric pressure.  相似文献   

3.
Pd/alloy-based (Pd/Cu, Pd/Au) membrane reactors embedded into Integrated Gasification Combined Cycle (IGCC) plants (IGCC-MR) enable the storage and/or use of the energy value of H2 to produce electricity while the CO2 enriched retentate exit stream becomes particularly suitable for high pressure CO2 capture-sequestration. There is undoubtedly a lack of operating experience associated with IGCC-MR plants, and therefore, sound process intensification principles/practices should be followed not only to enhance process system performance but also to ensure process safety and economic feasibility of an IGCC-MR plant. Motivated by the above considerations, a comprehensive process economic assessment framework for an inherently safe membrane Pd/alloy-based reactor integrated into an IGCC plant is proposed. In particular, a detailed Net Present Value (NPV) model has been developed to evaluate the economic viability of an IGCC-MR plant where the membrane reactor module design conforms to basic inherent safety principles. Sources of irreducible uncertainty (market, regulatory and technological) are explicitly recognized such as the power plant capacity factor, Pd price, membrane life time and CO2-taxes due to future regulatory action/policies. The effect of the above uncertainty drivers on the project's/plant's value is studied through Monte Carlo methods resulting in detailed NPV-distribution and process economic outcome profiles. The simulation results derived suggest that in the presence of (operational, economic and regulatory) uncertainties, inherently safe membrane reactor technology options integrated into IGCC plants could become economically viable. In particular, comparatively more attractive NPV distribution profiles are obtained when concrete safety risk-reducing measures are taken into account through pre-investment in process safety (equipment).  相似文献   

4.
车用催化转化器起燃温度的数值模拟   总被引:1,自引:0,他引:1  
车用催化转化器是降低汽车排气污染物浓度的主要装置.起燃温度是催化转化器的重要特性之一,它表明催化器在多高的温度下有较高转化率.数值模拟研究催化转化器的性能可以减少实验量,指导和优化催化器的设计.建立了催化转化器一维稳态转化率的数学模型,对起燃温度特性曲线进行模拟.数值模拟结果与实验测量值较吻合.这说明,建立的数学模型可以用来模拟起燃温度特性曲线.用该模型考察了空速、载体长度、催化剂比表面积、载体导热系数以及壁厚等因素对起燃温度特性曲线的影响.结果表明,空速越大,催化转化器的起燃温度越高;增大载体长度和催化剂比表面积有利于降低起燃温度;载体导热系数和壁厚的大小对起燃温度几乎没有影响.  相似文献   

5.
Hydroxylamine, NH2OH, thermal decomposition has been responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting the rate of its decomposition are not understood. In this work, isoperibolic calorimetric measurements were performed in a metal reactor, in the temperature range 130–150 °C, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The calorimetric measurements were performed in order to assess the effects that NH2OH concentration, temperature and reactor venting has on NH2OH rate of decomposition. The measurements showed that increased concentration or temperature, results in faster reactions and probably higher pressure generation per mass of reactant, with concentration having a more pronounced effect. However, when both factors work synergistically the result is dramatically worse in terms of reaction rate. The pressure generation is also different, thus indicating that different reaction pathways predominate each time. Venting the produced gases in stages resulted in the highest mass loss of the solution.  相似文献   

6.
The purpose of this study was to develop a model for an integrated estimation of the functional state of the human organism (FSHO) and an integral estimation of physical factors (PF) for hygienic rating. Tests were performed twice with 3 men in 0.7-clo clothing during 4-hr mental work with 9 combinations of 4 PF: wideband noise (55–83 dB(A)), whole-body vibration (6 Hz, az = 0.2–1.8 ms?2), air temperature (18–30 °C), and illumination (1, 3, 5 lx). Thermoregulatory, cardiovascular, and psychophysiological reactions and temporary threshold of hearing (TTS2) shifts were studied. For the integral estimation of PF influence on FSHO the model F(y1, y2, ... ym) = f(x1, x2, ... xn) was used, relating both FSHO and PF sets. The most important physiological parameters in creating FSHO are defined and the contribution of individual parameters of FSHO and PF is found.  相似文献   

7.
The absorption of NO encountering flue gases in aqueous solutions of Fe(II)EDTA was determined using a semi-batch stirred tank with a plane gas–liquid interface at 50 °C. The concentrations of NO, SO2 and O2 in the feeding stream were 300–800 ppm, 500–2200 ppm and 0–20%, respectively. The pH value of the Fe(II)EDTA solutions varied from 3 to 11. The concentrations of Fe(II)EDTA were maintained between 0.01 and 0.05 M. Experiments were performed to evaluate the effect of operating parameters on the NO absorption rate, the reaction kinetics of the reactants in gas and liquid phases, and the effect of competition between various reactants on the mass transfer rate in the NO removal system. Results indicate that the average reaction rate constant is 3.70 × 107 M−1 s−1. Adding NaOH does not increase the absorption capability of Fe(II)EDTA. The presence of O2 decreases the NO absorption rate with Fe(II)EDTA. The absorption rate of NO with Fe(II)EDTA decreases at low concentrations of SO2, but increases at high concentrations.  相似文献   

8.
An integrated process of metal chelate absorption coupled with two stage bio-reduction using immobilized cultures has been proposed to continuously removal of NOx, and the effects of SO2, NO and O2 concentration, gas/liquid flow rate on NOx removal efficiency were investigated. Although nitrogen-containing components, such as Fe(II)EDTA-NO, NO2? and NO3? in the scrubbing solution, inhibited the bio-reduction of Fe(III)EDTA obviously, it was feasible to abate the inhibition effect by using the two stage bio-reduction system, and thus to improve NOx removal efficiency. The removal efficiency decreased slowly with the increase of SO2, O2, NO concentration and gas flow rate, and increased with the increase of liquid flow rate. Continuously operating for 18 days, a high removal efficiency around 95% was reached by using the two-stage bio-reduction system with immobilized microorganisms, while the value decreased to 85% after 5 days of operation by using the suspended microorganisms, at a constant gas flow rate of 60 L/h containing 424–450 mg/m3 NO, 2428–2532 mg/m3 SO2 and 3% O2.  相似文献   

9.
The reaction between ethanol and water was studied in the temperature range of 400–600°C at atmospheric pressure over supported catalysts in a microchannel reactor. The supported catalysts prepared by washcoating and impregnation were active in the ethanol steam reforming but differ in their performance. The metal nature, metal loading and type of the carriers markedly influence the catalytic activity and selectivity of the catalysts. Among them Rh-based catalysts exhibited the highest catalytic activity, as compared to Co and Ni-based catalysts. Bimetallic Rh-Ni catalysts exhibit significant improvement in terms of ethanol conversion and hydrogen selectivity and the promoting role of the Ni and CeO2 addition is discussed. The bimetallic Rh-Ni catalyst promoted by CeO2 was stable for at least 100 h without any detectable degradation in performance.  相似文献   

10.
This paper presents a new decision-support methodology and software tool for sustainable management of urban pollution. A number of different methods and tools are integrated within the same platform, including GIS, LCA, fate and transport modelling, health impact assessment and multi-criteria decision analysis. The application of the framework is illustrated on a case study which investigates the environmental and health impacts of pollution arising from different industrial, domestic and transport sources in a city. The example city chosen for the study is Sheffield, UK, and the main pollutants considered are NOx, SO2 and PM10. The results suggest that the absence of the current large industrial sources in the city would lead to a 90% reduction of the SO2 and 70% of the NO2 ground concentrations, consequently preventing 27 deaths and 18 respiratory hospital admissions per annum for a population of 500,000. Based on the total annual mortality and hospital admissions in Sheffield for the year of the assessment, this means that 0.53% of premature deaths and 0.49% of respiratory hospital admissions would be prevented by the estimated reduction in air pollution.  相似文献   

11.
In recent years, coal mines in China have seen accidents caused by sudden release of hydrogen sulfide (H2S), with higher severity. Based on recent local and overseas research on the origin of hydrogen sulfide and the comparative analysis of isotopes, the paper presents three formation models of hydrogen sulfide: bacterial sulfate reduction (BSR), thermo-chemical sulfate reduction (TSR) and igneous activity, as well as the characteristics for identification. This paper analyzes and categorizes the formation models of some hydrogen sulfide in coal seams in China. Some suggestions were put forward for future research of H2S in coal mines in China.  相似文献   

12.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

13.
The syngas produced by coal gasification processes can be utilized in Pd-based water-gas-shift membrane reactors for the production of pure H2. Pd/alloy composite membrane reactors exhibit comparative advantages over traditional packed bed reactors such as simultaneous reaction/separation in one compact unit and increased reaction yields. Furthermore, the development of comprehensive process intensification strategies could further enhance membrane reactor performance resulting in a substantially smaller and functional, inherently safer, environmentally friendlier and more energy efficient process.A systematic non-isothermal modeling framework under both steady state and dynamic/transient conditions for a catalytic high temperature water-gas shift reaction in a Pd-based membrane reactor has been developed to characterize the dynamic behavior of the process system at various operating conditions from a process safety standpoint. In particular, various reaction conditions as well as key process variables such as feed temperature and flow rate, catalyst loading, driving force for H2 permeation are considered as they are critically related to various safety aspects in the operation of a Pd-based membrane reactor. Within the proposed framework, process parameters and operating conditions which may induce hazards and compromise process safety are identified, analyzed and characterized. Finally, the proposed approach is evaluated through detailed simulation studies in an illustrative case study involving a real Pd-based membrane reactor used for pure hydrogen production and separation that exhibits complex behavior over a wide operating regime.  相似文献   

14.
This paper discusses some aspects of the kerosene components oxidation in a soil matrix by a dielectric barrier discharge reactor at atmospheric pressure. The total kerosene components abatement can reaches 90% for an energy density of 960 J gsoil?1. The analyses of the discharge cell outlet gas reveals that COx and hydrocarbon compounds selectivity is close to 10%. A semi-quantitative approach by GC-FID shows that the carbon content in the oxidized compounds in soil is about 20% of the carbon content in the initial kerosene components. The polar species formed in soil are a mixture of aliphatic and aromatic molecules containing alcohol and carboxylic acid groups. The process of kerosene oxidation in soil matrix is more promoted than kerosene desorption followed by an oxidation in gas phase.  相似文献   

15.
Adsorption of Pb(II) ions from aqueous solution onto a low cost adsorbent—the Eupatorium adenophorum spreng has been investigated to evaluate the effects of initial lead ion concentration, contact time, pH and temperature on the removal of Pb(II) systematically. The optimal pH value for Pb(II) adsorption onto the E. adenophorum spreng was found to be 5.0. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated by applying the van’t Hoff equation, which describes the dependence of equilibrium constant on temperature. The thermodynamics of Pb(II) adsorption onto the E. adenophorum spreng indicated that the adsorption was spontaneous and endothermic. Langmuir and Freundlich isotherms were used to analyze the equilibrium data at different temperatures and the equilibrium data were found to fit Freundlich isotherm equation better than Langmuir isotherm. The adsorption was analyzed using pseudo-second-order kinetic models.  相似文献   

16.
The acute-toxic-class method (ATC) is an alternative to the classical LD50 test. Four substances were tested with an ATC testing procedure. The results were compared with LD50 data obtained from the literature. Great importance was attached to the observations of toxic signs following administration. The results of this study have shown that the ATC method allows allocation to toxicity classes in the same manner as on the basis of the classical LD50 tests. The ATC method uses fewer animals and yields the same information on toxic signs. Introducing the ATC method into the quality system allows estimating the acute oral toxicity of chemicals according to the Organisation for Economic Cooperation and Development (OECD; OECD, 1992, 1996).  相似文献   

17.
18.
This study investigated the thermal degradation energy (activation energy, Ea) for nitrocellulose (NC) with low nitrogen content of 11.71 mass%, so-called NC3, by using two different kinds of thermal analysis instruments: thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC). A comparison of Ea for various nitrogen content NC samples at two scanning rates (5 and 10 °C min?1) tested by TGA and DSC is also discussed in this paper. Meanwhile, our aim was to analyze the anti-degradation of Ea for NC with high nitrogen content, as so-called NC1. Thermal stability for NC1 with diphenylamine (DPA) was tested via DSC with 10 DPA concentrations in weights of 0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, and 3.0 mass%. Experimental results indicated that Ea of NC3s was 319.91 kJ mol?1. Moreover, that while dosing DPA into NC1 the best recipe could be employed to avoid any violent NC1 runaway and also can be used to distinguish the differences of thermal decomposition Ea between NC with different nitrogen contents. This study established a fast and efficient procedure for thermal decomposition properties of NC, and could be applied as an intrinsically safer design during relevant operations.  相似文献   

19.
1-Butyl-2,3-dimethylimidazolium nitrate ([Bmmim][NO3]), a kind of versatile and novel ionic liquids, is widely applied in the modern petrochemical industry. Nevertheless, its thermal hazard safety data at high temperature or thermal disturbance conditions are currently unavailable. Therefore, this study aimed to characterize the thermal risk of [Bmmim][NO3] through auto-ignition temperature measurements, flash point analysis, thermal gravimetric analysis/differential scanning calorimetry (TGA/DSC), TGA-Fourier transform infrared spectroscopy (TGA-FTIR) and thermal decomposition kinetics analysis. Additionally, [Bmmim][NO3] was examined using isothermal thermogravimetric analysis at different temperatures (220, 230, 240, 250, 260 and 270 °C). The experimental results show that the flash point of [Bmmim][NO3] is 305.70 ± 9.30 °C and the auto-ignition temperature is 341.00 ± 21.60 °C with an ignition delay time of 8.6 s. In addition, using the nitrogen atmosphere TGA data to calculate the activation energy according to the Friedman, Kissinger and Flynn-Wall-Ozawa methods, roughly the same results were obtained. Finally, TGA-FTIR results show that [Bmmim][NO3] produced acetylene, butane, butanol and carbon dioxide during the thermal decomposition process. This study could provide data support and some guidance for the thermal hazard assessment and safety control of [Bmmim][NO3] during its use and storage.  相似文献   

20.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号