首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
宁波市环境空气中VOCs污染状况及变化趋势分析   总被引:7,自引:4,他引:3  
基于近7年来的连续监测数据,对宁波市环境空气中挥发性有机物(VOCs)的污染状况及变化趋势进行了初步分析。研究表明:在宁波市环境空气中检测出94种VOCs,其主要成分是饱和烷烃、芳烃、烯烃、卤代烃、卤代芳烃、含氧有机物等,有37种属有毒有害物质,其中苯系物含量最高;宁波市环境空气中苯系物的污染程度与国内外城市基本处于同一水平,近年来的污染状况变化不大,没有明显恶化;空间分布特征显示一类保护区VOCs的排放以天然源为主,二类各功能区VOCs的排放由天然源和局部人为污染源共同形成,三类区以工业污染源排放为主;时间变化趋势显示VOCs在冬季和春季的平均浓度比其他季节高,VOCs的日变化基本呈现2个主浓度峰值特征,跟城市交通流量变化具有很好相关性。  相似文献   

2.
In the summer of 2003, ambient air concentrations of volatile organic compounds (VOCs) were measured at 12 sites within a 3-km radius in Deer Park, Texas near Houston. The purpose of the study was to assess local spatial influence of traffic and other urban sources and was part of a larger investigation of VOC spatial and temporal heterogeneity influences in selected areas of Houston. Seventy 2-h samples were collected using passive organic vapor monitors. Most measurements of 13 VOC species were greater than the method detection limits. Samplers were located at 10 residential sites, a regulatory air monitoring station, and a site located at the centroid of the census tract in which the regulatory station was located. For residential sites, sampler placement locations (e. g., covered porch vs. house eaves) had no effect on concentration with the exception of methyl tertiary-butyl ether (MTBE). Relatively high correlations (Pearson r > 0.8) were found between toluene, ethylbenzene, and o,m,p-xylenes suggesting petroleum-related influence. Chloroform was not correlated with these species or benzene (Pearson r < 0.35) suggesting a different source influence, possibly from process-related activities. As shown in other spatial studies, wind direction relative to source location had an effect on VOC concentrations.  相似文献   

3.
High concentrations of volatile organic compounds (VOCs) in ambient air of urban areas stress the need for the control of VOC emissions due to the toxic and carcinogenic nature of many VOCs commonly encountered in urban air. Emission inventories are an essential tool in the management of local air quality, which provide a listing of sources of air pollutant emissions within a specific area over a specified period of time. This study intended to provide a level IV emission inventory as par the United States Environmental Protection Agency (USEPA) definition for evaporative VOC emissions in the metro cities of India namely Delhi, Mumbai, Chennai, and Kolkata. The vehicular evaporative emissions are found to be the largest contributor to the total evaporative emissions of hydrocarbons followed by evaporative losses related to petrol loading and unloading activities. Besides vehicle-related activities, other major sources contributing to evaporative emissions of hydrocarbons are surface coating, dry cleaning, graphical art applications, printing (newspaper and computer), and the use of consumer products. Various specific preventive measures are also recommended for reducing the emissions.  相似文献   

4.
Air pollution has assumed gigantic proportion killing almost half a million Asians every year. Urban pollution mainly comprises of emissions from buses, trucks, motorcycle other forms of motorized transport and its supporting activities. As Asia's cities continue to expand the number of vehicles have risen resulting in greater pollution. Fugitive emissions from retail distribution center in urban area constitute a major source. Petrol vapours escape during refueling adding pollutants like benzene, toluene, ethylbenzene and xylene to ambient air. This paper discusses a study on fugitive emissions of Volatile Organic Compounds (VOC) at some refueling station in two metropolitan cities of India, i.e., Mumbai and Delhi. Concentration of VOCs in ambient air at petrol retail distribution center is estimated by using TO-17 method. Concentration of benzene in ambient air in Delhi clearly shows the effect of intervention in use of petroleum and diesel fuel and shift to CNG. Chemical Mass Balance (CMB) model is used to estimate source contributions. At Delhi besides diesel combustion engines, refueling emissions are also major sources. At Mumbai evaporative emissions are found to contribute maximum to Total VOC (TVOC) concentration in ambient air.  相似文献   

5.
Volatile organic compound (VOC) emissions from furnishings have created a major indoor air pollution problem in China. The aim of this study was to investigate the VOC emission of larch particleboard under different processing conditions. VOCs collection chamber, parts per billion VOC monitor, and gas chromatography–mass spectrometer were used to analyze the VOC components and quantities. The results were shown as follows: (1) concentration and emission rate of VOCs were significantly affected by hot-pressing temperature and time. With the increase of hot-pressing temperature and time, both the earlier emission concentration and the amount of total volatile organic compounds increased. (2) The composition of VOCs was also influenced by temperature and time, especially the variety of terpene, benzene, and derivative. The existence and quantities of esters were still the main components of VOCs emissions.  相似文献   

6.
列车车厢内的空气质量对乘客的健康和乘坐舒适度有明显影响.密闭车厢的内装材料所释放的挥发性有机物(VOCs)是影响车厢内环境空气质量的主要污染物.为研究25G型客车车厢内空气VOCs浓度的分布机理及扩散规律,采用环境测试舱法和扫描电镜(SEM)表征,对车厢主要内装材料(座椅坐垫、PVC地板、墙板等)的VOCs释放速率进行...  相似文献   

7.
Passive air sampling for nitrogen dioxide (NO(2)) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established to assess intra-urban gradients of air pollutants to evaluate the impact of traffic and urban emissions on air quality. Ambient air monitoring and GIS data from spatially representative fire station sites were collected to assess spatial variability. Pairwise comparisons were conducted on the ambient data from the selected sites based on city section. These weeklong samples yielded NO(2) and benzene levels that were generally higher during the winter than the summer. With respect to the location within the city, the central section of Dallas was generally higher for NO(2) and benzene than north and south. Land use regression (LUR) results revealed spatial gradients in NO(2) and selected VOCs in the central and some northern areas. The process used to select spatially representative sites for air sampling and the results of analyses of coarse- and fine-scale spatial variability of air pollutants on a seasonal basis provide insights to guide future ambient air exposure studies in assessing intra-urban gradients and traffic impacts.  相似文献   

8.
Air samples were collected in Izmir, Turkey at two (suburban and urban) sites during three sampling programs in 2002 and 2004 to determine the ambient concentrations of several monoaromatic, chlorinated and oxygenated volatile organic compounds (VOCs). Samples were analyzed for 60 VOCs using gas chromatography/mass spectrometry and 28 compounds were detected in most samples. On the average, urban air VOC concentrations were about four times higher than those measured at the suburban site. Toluene (40.6%) was the most abundant compound in suburban site and was followed by benzene (7.4%), o,m-xylene (6.5%), and 1,2-dichloroethane (5.1%). In urban site, toluene (30.5%), p-xylene (14.9%), o,m-xylene (11.4%), and ethyl benzene (7.2%) were the dominating compounds in summer. In winter, toluene (31.1%), benzene (23.9%), 1,2-dichloroethane (9.5%), and o,m-xylene (8.2%) were the most abundant compounds. Receptor modeling (positive matrix factorization) has been performed to estimate the contribution of specific source types to ambient concentrations. Six source factors (gasoline vehicle exhaust, diesel vehicle exhaust+residential heating, paint production/application, degreasing, dry cleaning, and an undefined source) were extracted from the samples collected in the urban site. Three source factors (gasoline vehicle exhaust, diesel vehicle exhaust, and paint production/application) were identified for the suburban site.  相似文献   

9.
In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five municipal landfill sites in Korea including Nan Ji (NJ), Woon Jung (WJ), Sam Poong (SP), Hoei Chun (HC), and No Hyung (NH). The concentration levels of those VOC were found to be significantly different, mainly as a function of such a parameter as landfill aging. The VOC concentrations measured from the unclosed landfill sites (e.g., WJ) were characterized by exceedingly high values above a few tens of ppm. However, the results of the abandoned site (e.g., SP) were about three orders of magnitude lower than the others so as to merely exceed the typical ambient concentration levels. It was most striking to find a systematic dominance of toluene over other aromatic VOC under most circumstances. The LFG flux values of all aromatic VOC and the four specific major ones (termed as BTEX: benzene, toluene, ethylbenzene, and xylene) were also computed for each vent pipe from all study sites using their concentrations and the concurrently determined environmental parameters. The results, if calculated in terms of the average BTEX quantity emitted per vent pipe, showed that the magnitude of their emissions can vary substantially, with the values ranging from 0.05 (SP) to 49.2 kg yr−1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of non-methane hydrocarbons (NMHC), were able to explain a constant, but minor, proportion of the LFG carbon budget.  相似文献   

10.
典型化工园区大气中挥发性有机物污染调查   总被引:1,自引:0,他引:1       下载免费PDF全文
对常州市某典型化工园区大气中挥发性有机物(VOCs)污染状况进行了调查。结果表明,该化工园区大气中检出挥发性有机物共有58种,组分有芳香烃、饱和烷烃、卤代烃、烯烃、醛酯类化合物及其他类;苯、甲苯、乙苯、二甲苯为主要挥发性有机污染物,质量浓度为1.0~194μg/m~3;均未超出参考标准的限值。背景点位和园区点位大气中主要ρ总(VOCs)在秋冬季最高,敏感点大气VOCs随季节变化也较为明显;园区T1和T2ρ总(VOCs)年均值高于敏感点位,背景点位年均值最低;园区点位除了汽车尾气排放之外,溶剂的挥发和生产工艺中污染物的排放也增加了大气中苯系物的浓度,同时也对敏感点位和对照点位的大气质量产生了一定的影响。  相似文献   

11.
Hourly concentrations of ozone (O(3)), 55 volatile organic compounds (VOCs, ozone precursors) and nitrogen oxides (NOx) were measured at an upwind urban site, a downwind suburban site, and a rural site in central Taiwan, from January 2003 to December 2006. VOC and NOx mean concentrations showed a gradient from high to low across the urban (56 ppb and 34 ppb), suburban (38 ppb and 27 ppb) and rural sites (25 ppb and 21 ppb) but a reverse gradient in ozone across these sites (24, 27, and 29 ppb, respectively). Although there was about twice the difference in VOC concentrations between the urban and rural sites, nearly 65% ozone formation potential was contributed to by the same 9 VOCs. Seasonal patterns showed peak ozone levels in autumn and minima in summer at the urban site, but minima in winter at the downwind suburban and rural sites. Ozone precursor levels, on the other hand, were lowest in summer and highest in winter. The diurnal pattern showed that ozone levels peaked one hour later at the rural site than at the urban site. The ethylbenzene to m,p-xylene ratio, an indicator of the age of the air mass, increased from 0.4 at the urban site to 0.6 at the suburban site and 0.8 at the rural site during daily peak ozone times. This finding suggests the transport of ozone and precursors from upwind to downwind producing elevated ozone levels in the suburban and rural areas. Ozone episodes occurred mostly in days with a mean midday UV index of 6.5 (1 UV index=100 J m(-2)) and wind speed at 1.3 m s(-1) at all three sites.  相似文献   

12.
The presence of volatile organic compounds (VOCs) from traffic and other sources in urban areas is a cause for concern about public health. Canister, chemical derivatisation, particulate sampling and adsorption sampling techniques were used to measure VOC concentrations of a wide range of compounds (C6-C40) during a four day campaign in south London with subsequent laboratory analysis of the samples. Compounds quantified included alkanes, mono- and poly-nuclear aromatic hydrocarbons. Also the first sequential measurements of carbonyl compounds (C1-C8) in a UK urban area are presented. Results from canister and adsorption sampling methods are compared. A comparison of the results with other urban data is presented and the temporal variations in VOC concentrations were interpreted with reference to the prevalent wind speeds and directions. The CALINE4 line source dispersion model was generally successful in reproducing the daytime 12 hour average concentrations of selected VOCs.  相似文献   

13.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

14.
The compositions, spatial distributions, seasonal variations and ozone formation potential (OFP) of volatile organic compounds (VOCs) were investigated in the atmosphere of Haicang District, Xiamen City, Southeast China. Twenty-four types of VOCs were measured in this study, and ethanol, methylene chloride, toluene, ethyl acetate and isopropyl alcohol were the abundant species based on concentration rank. The concentrations of total VOCs (TVOCs) in industrial areas were higher than those in residential and administrative areas and background site. For industrial areas, the TVOCs concentrations in summer were higher than those in winter, which might result from higher emissions from industrial activities because of stronger evaporation in summer. In contrast, non-industrial areas showed higher concentrations in winter due to the unfavorable meteorological conditions. The spatial distribution of BTEX (benzene, toluene, ethylbenzene and xylene) followed the order of industrial areas > residential and administrative areas > background site, and the concentrations in summer were lower than those in winter for most sites. The high ratios (8.9-14.0) of T/B in this study indicated that industrial emissions were the main sources in this district. X/B ratios were used to assess the ages of air parcels and provided evidence of the transport of air parcels among these sites. Total OFP (TOFP) showed the trend of increase with the increase of TVOCs, and toluene was found as the major contributor to TOFP.  相似文献   

15.
基于2019年沈阳市4个不同功能区挥发性有机物(VOCs)小时分辨率的在线监测数据,分析了环境空气中VOCs的污染特征及来源。结果表明,观测期间沈阳市环境空气中VOCs日平均体积分数为(31.5±13.3)×10~(-9),4个功能区VOCs体积分数均呈现出冬季明显大于夏季的特征;工业区环境空气中VOCs体积分数明显高于其他功能区。商业交通居民混合区、文化居民混合区、郊区VOCs体积分数呈现明显双峰结构,工业区双峰结构不明显。工业区VOCs以新鲜排放为主,而其他3个区域为老化气团的传输。工业区春、夏季环境空气中VOCs来源包括燃料挥发源(26.90%)、溶剂与涂料源(17.69%)、燃烧源(16.40%)、化工源(15.69%)、交通源(7.57%)和炼油炼焦源(4.15%)。秋、冬季VOCs的来源包括燃烧源(30.77%)、溶剂与涂料源(20.26%)、燃料挥发源(18.79%)、化工源(11.54%)、炼油炼焦源(9.34%)和交通源(5.51%)。  相似文献   

16.
The variability of pollutants is an important factor in determining human exposure to the chemicals. This study presents the result of investigation of variability of Volatile organic compounds (VOCs) in urban area of Delhi, capital of India. Fifteen locations, in five categories namely residential, commercial, industrial, traffic intersections and petrol pump were monitored for one year every month during peak hours in morning and evening. Measurement focused on target VOCs as defined by USEPA. Variability was divided into measurement, spatial, temporal and temporal–spatial interaction components. Temporal component along with temporal–spatial interaction were found to be the major contributors to the variability of measured VOC concentrations. Need of continuous monitoring to capture short–term peak concentration and averages is evident.  相似文献   

17.
With the growing concern regarding emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs), the relationship between the VOC emission rates and the associated public health risks has been rarely discussed. The objective of this study was to examine and compare the VOC emission rates and cancer and non-cancer risks by inhalation intake, using a municipal WWTP in China as an example, with respect to the effects of treatment technologies, VOC species, and seasonal variation. Given the treatment technology considered, the emission rates of VOCs in this study were estimated by means of mass balance or calculated on the molecular level. From the viewpoints of both emission rates and cancer and non-cancer risks, sedimentation was the treatment technology with the highest health risks to the workers. Slightly lower VOC emission rates and health risks than those for sedimentation were observed in anaerobic treatment. Although the aeration significantly enhanced the VOC emission rates in the aerobic treatment process, the associated health risks were limited due to the low VOC concentrations in the gas phase, which were likely attributed to the strong mixing and dilution with fresh air by aeration. Amongst the VOCs investigated, benzene was the VOC with both a relatively high emission rate and health risk, while trichloroethylene possessed a high emission rate but the lowest health risk. Without strong interfacial aeration and turbulence between the water and atmosphere, the effects of treatment technology and seasonal variation on the health risks might be connected to the VOC emission rates, while the effect of VOC species depended considerably on the respective cancer slope factors and reference concentrations; the employment of aeration provided a different conclusion in which the emission rates were enhanced without a significant increase in the related cancer risks. These findings can provide insight into future health risk management and reduction strategies for workers in WWTPs.  相似文献   

18.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

19.
2019年8—9月,在常州市洛阳小学、市监测站和武澄工业园3个监测站点开展了为期49 d的环境空气57种挥发性有机物(VOCs)离线加密监测,分析其浓度水平及组成特征。结果表明,3个站点VOCs的体积分数分别为29.8×10-9,20.8×10-9和25.3×10-9。3个站点中烷烃的值均值最大,其值占比依次为59.1%,57.2%和51.4%,烷烃中均以乙烷、丙烷和正丁烷值最大。应用臭氧生成潜势(OFP)、OH自由基消耗速率和二次有机气溶胶生成潜势(SOAP)分别对3个站点进行计算,结果显示,各站点芳香烃的数值均最大,OFP占比为67.1%~68.0%,OH自由基消耗速率占比为45.4%~52.0%,SOAP占比为93.3%~94.7%,芳香烃中关键活性组分是甲苯、乙苯和二甲苯等。上风向的洛阳小学与武澄工业园VOCs浓度比市区的市监测站更高,OFP和SOAP也均高于市监测站,表明上风方向的VOCs排放对市区影响较大。  相似文献   

20.
Adsorbent sampling with analysis by thermal desorption, gas chromatography and mass spectrometry (TD/GC/MS) offers many advantages for volatile organic compounds (VOCs) and thus is increasingly used in many applications. For environmental samples and other complex mixtures, the MS detector typically is operated in the scan mode to aid identification of co-eluting compounds. However, scan mode does not achieve the optimal sensitivity, thus compounds occurring at low concentrations may not be detected. This paper develops and evaluates the application of a more sensitive TD/GC/MS method using selective ion monitoring (SIM) that is applicable to VOC mixtures found in ambient and indoor air. Based on toxicity and prevalence, 94 VOCs (including terpenes, aromatic, halogenated and aliphatic compounds) were selected as target compounds. Two analytical methods were developed: a conventional full scan method for ions from 29 to 270 m/z; and a SIM method using 16 time windows and different ions selected for the compounds in each window. Both methods used the same Tenax GR adsorbent sampling tubes, TD and GC parameters, and target and qualifier ions. Laboratory tests determined calibrations, method detection limits (MDLs), precisions, recoveries and storage stability. Field tests compared scan and SIM mode analyses for duplicate samples of indoor air in 51 houses and outdoor air at 41 sites. Statistical analyses included the development of error/precision models. The laboratory tests showed that most compounds demonstrated excellent precision (<10% for concentrations exceeding approximately 0.5 microg m(-3)), good linearity, near identical calibrations for scan and SIM modes, a wide dynamic range (up to 1500 microg m(-3)), and negligible storage losses after 1 month (7 compounds showed moderate losses). SIM mode MDLs ranged from 0.004 to 0.27 microg m(-3), representing a modest (1.1 to 22-fold) improvement compared to scan mode. However, in field tests the SIM method detected significantly more compounds (e.g., styrene and chloroform). Error models fit most compounds and allow quantification of errors at selected percentiles. Overall, while the new SIM method is somewhat time-consuming to develop, it offers greater sensitivity and maintains the high selectivity of traditional scan methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号