首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
根据清洁空气行动计划,北京市将继续调整能源结构,新建天然气热电中心替代燃煤发电,并且进行工业锅炉煤改气、居民供暖煤改电、远郊区炊事用气改造等措施,以减少煤炭的使用量. 采用自下而上的排放因子法,估算减少燃煤所产生大气污染物(TSP、PM10、一次PM2.5、SO2、NOx及VOC)的减排量,并利用ADMS-Urban模型模拟其对环境空气质量的改善. 结果表明:①2015年北京市煤炭控制在1500×104t以内,测算的煤炭减量为863.38×104t,TSP、PM10、一次PM2.5、SO2、NOx和VOC的减排量分别为2580.17、2032.94、1183.53、6265.30、7220.90和1058.44t. ②各污染物减排空间分布基本一致,主要集中在城市功能拓展区,包括石景山、朝阳区、海淀区和丰台区等,上述区域对TSP、PM10、一次PM2.5、SO2、NOx和VOC削减贡献分别达到78.3%、81.5%、82.7%、85.2%、83.0%和49.9%. ③ADMS-Urban模型模拟结果表明,减少燃煤可使环境空气中ρ(TSP)、ρ(PM10)、ρ(一次PM2.5)、ρ(SO2)、ρ(NOx)和ρ(VOC)分别降低0.55~12.74、0.44~10.78、0.27~6.77、0.78~17.31、1.67~43.48和0.17~12.07μg/m3.   相似文献   

2.
细颗粒物是燃煤电厂污染物控制的难点.三河电厂通过技术集成进行“近零排放”技术攻关,包括采用低低温静电除尘器以提高细颗粒物的除尘效率、利用脱硫除尘一体化技术提高脱硫系统的协同除尘性能、通过湿式静电除尘器实现细颗粒物的深度控制.结果表明:三河电厂通过技术攻关和集成应用后,4台燃煤机组先后实现ρ(烟尘)、ρ(SO2)和 ρ(NOx)分别低于GB 13223—2011《火电厂大气污染物排放标准》中天然气燃气轮机组各自排放限值(5、35和50 mg/m3).其中,1~3号机组排放ρ(烟尘)分别为5、3、2 mg/m3,截至2016年3月15日,4号机组ρ(烟尘)连续265 d在1 mg/m3以下.采用低低温静电除尘技术后,4号机组除尘效率由99.86%升至99.89%,同时可凝结颗粒物前驱物SO3的脱除效率从25.88%升至46.12%;3号机组采用脱硫除尘一体化技术后,100%负荷下协同除尘效率从34.29%升至87.66%以上,全负荷运行下吸收塔出口ρ(烟尘)稳定在3 mg/m3左右;1号、2号、4号机组在100%负荷下湿式静电除尘器除尘效率分别为77.87%、88.82%、83.60%,2号湿式静电除尘器对PM2.5、PM10和SO3的脱除效率分别为98.37%、97.31%和42.23%.   相似文献   

3.
针对神华集团典型“近零排放”燃煤机组,考察了大气污染物(烟尘、SO2、NOx、汞及其化合物)的排放特征,提出了更加契合绿色发展生态环保要求的燃煤电厂大气污染物排放限值,即烟尘、SO2、NOx和汞及其化合物排放限值分别为1、10、20和0.003 mg/m3(简称“‘1123’排放限值”).评估了新建“近零排放”燃煤机组的长期运行排放状态,并研究了“近零排放”机组汞污染协同减排效果.结果表明,2017年1—10月新建机组烟尘、SO2、NOx排放质量浓度平均值分别在0.69~0.77、6.04~6.63、16.56~16.79 mg/m3之间,排放绩效可低至0.0023、0.022、0.057 g/(kW·h),污染减排已达到国际领先水平;“1123”排放限值下烟尘、SO2和NOx的达标率分别超过92.06%、85.43%和77.46%,“近零排放”原则性技术路线可实现更好、更优的生态环保排放指标.燃煤机组通过“近零排放”技术改造,可提高烟气中Hg0的氧化效率和汞化合物的捕获效率,环保设施组合协同脱汞效率提升至75.3%~90.9%(平均值为82.8%±8.1%),汞排放水平降至0.51~1.45 μg/m3〔平均质量浓度为(0.94±0.47)μg/m3〕,基本达到国际先进煤电机组的协同控制水平.研究显示,清洁煤电大气污染物新排放限值总体上比GB 13223—2011《火电厂大气污染物排放标准》中燃煤电厂大气污染物排放限值小1个数量级,可为加快推进生态文明建设、制订先进的燃煤电厂大气污染物排放新标准提供科学依据.   相似文献   

4.
生态文明建设是一场涉及生产方式、生活方式、思维方式和价值观念的革命。总结了清洁煤电“近零排放”的提出背景、环保政策及排放标准的发展历程,分析了燃煤大气污染物烟尘、二氧化硫(SO2)、氮氧化物(NOx)和汞等重金属排放控制技术发展现状以及燃煤机组实现“近零排放”的技术路线。选取不同区域典型燃煤机组进行案例分析,结果表明:典型机组烟尘、SO2及NOx排放浓度长期低于5、35、50 mg/m3,锦界三期、寿光电厂等机组低于1、10、20 mg/m3,舟山4号、三河4号机组实现“近零排放”后已稳定运行超过7年。研究“近零排放”煤电的经济性,分析“近零排放”的环境和社会效益,提出“近零排放”技术、标准和实践的哲学思考,展望清洁煤电绿色发展方向。燃煤发电“近零排放”技术和工程实践推动了我国环保标准的发展,标准提升促进了技术进步,基于我国国情持续推进煤炭清洁高效利用,不断提升环保标准,对保障我国的能源安全和可持续发展具有重要意义。  相似文献   

5.
钢铁行业是我国重要的基础行业,也是典型的高污染行业,每年排放大量的二氧化硫(SO2)和氮氧化物(NOx)等大气污染物。随着钢铁行业超低排放标准的实施,对大气污染有主要贡献的烧结工序亟须改造现有的或新建先进的脱硫脱硝设施。在介绍烧结烟气特点和排放标准变化的基础上,综述了目前主流应用的单独脱硫技术、单独脱硝技术和同时脱硫脱硝技术的应用现状,以及实验研发阶段的同时脱硫脱硝技术的研发进展,并系统展望了各类技术的未来发展前景。指出在单独脱硫和脱硝技术中,半干法和低温选择性催化还原法(SCR)更具应用潜力,且半干法脱硫+袋式除尘+SCR的工艺组合环境效益最高;同时脱硫脱硝技术中,氧化法和活性焦法尚需进一步提高效率和降低成本,同时脱硫脱硝技术具有潜在发展前景。  相似文献   

6.
我国区域性复合型大气污染日益严重,以燃煤火电为代表的煤炭消费相关产业已经成为最为重要的大气污染源,并已成为制约燃煤火电行业发展的重要因素. 应用RAMS(区域大气模式系统)-CMAQ(多尺度空气质量模式系统)模拟和评估全国燃煤火电对区域大气环境的影响,并分析了近地面风场对燃煤火电布局的影响;基于煤炭消费总量增长趋势与控制目标,预测燃煤火电的发展规模,提出全国燃煤火电分区布局策略. 结果表明:燃煤电厂对我国东部地区NOx、SO2、PM2.5以及PM10排放通量的贡献较大,但燃煤电厂对ρ(SO2)、ρ(O3)、ρ(PM2.5)和ρ(PM10)年均值的贡献率较小,基本维持在10%以下,仅对ρ(NOx)年均值贡献达到了10%~20%;考虑到盛行风向对污染物传输的影响,需谨慎在京津冀西北方向、长三角周边以及珠三角以北方向的较近区域新建燃煤电厂或大型燃煤火电基地;按照既定的煤炭消费总量控制目标(42×108 t)估算,2020年新增燃煤电厂容量可以满足电力消费需求增量的70%,“十三五”期间仍需要进一步开发其他替代能源,煤炭消费总量控制对煤电发展的影响逐渐减弱;中东部地区可增加燃煤火电装机容量较小,华北平原、长三角、珠三角和四川盆地等地区应禁止新建煤电机组,新疆维吾尔自治区、内蒙古自治区西部、宁夏回族自治区、陕西省北部等西部地区将是未来燃煤火电发展空间最大的区域.   相似文献   

7.
2013年9月10日国务院颁布了《大气污染防治行动计划》(下称《行动计划》).为研究《行动计划》颁布前后我国不同地区大气污染状况变化及其防治措施效果,通过分析2013—2014年“中国大气气溶胶研究网络(CARE-China)” 36个监测站点ρ(PM2.5),结合同期环境保护部公布的74个重点城市大气主要污染物浓度数据和OMI卫星数据,分析了我国不同地区ρ(PM2.5)变化及其原因;同时,以北京为例,分析了不同粒径段中颗粒物质量浓度变化的原因.结果表明:①京津冀及其周边、长三角、珠三角、西南、成渝、西北、华中、关中和东北9个地区ρ(PM2.5)年均值下降了1.1~16.3 μg/m3.其中,京津冀及其周边、长三角、珠三角、成渝和关中地区降幅均超过10.0%,分别为10.2%、10.7%、11.6%、16.9%和20.8%.②不同地区ρ(NO2)和ρ(SO2)年均值变化基本一致,近地面ρ(NO2)年均值在京津冀及其周边、珠三角、西南、成渝和华中等地区降幅在3.0%~9.2%之间,但是华北平原地区NO2柱浓度下降明显,降幅在10.0%~20.0%之间.③北京地区ρ(PM1)和ρ(PM2.5)年均值分别下降了5.7和0.2 μg/m3,并且ρ(NO3-)和ρ(SO42-)年均值在PM1和PM2.5中均有所下降,但ρ(PM1~2.5)与其ρ(NH4+)年均值升幅分别为27.9%和16.2%.因此,京津冀及其周边地区在防治措施实施过程中,在控制高架点源与实施脱硝措施等情况下,应逐步加强近地面面源和线源的控制力度;在实施SO2和NOx减排措施的同时,还需要重视机动车三元催化过程和燃煤电厂脱硫脱硝过程中可能导致的NH3排放问题.   相似文献   

8.
火电厂燃煤锅炉燃烧带来的主要污染问题是烟尘、SO_2、NO_x、及其他有害气体的排放,开展新疆区域燃煤锅炉大气污染物排放特征研究,对掌握新疆区域内电厂污染物排放特点,控制大气污染具有重要意义。现场测试结果表明:相同装机容量,相同工艺的脱硝、除尘、脱硫设施的情况下,南疆两家电厂的污染物排放浓度较北疆两家电厂的污染物浓度较低。  相似文献   

9.
近周边电厂源对北京市采暖期间SO2的贡献分析   总被引:10,自引:7,他引:3  
应用中尺度气象模式(MM5)与区域多尺度空气质量模型(CAMx)的耦合模型系统,模拟研究了2005年采暖期间近北京地区电厂源排放对北京市空气质量的影响;采用SO2贡献来源识别技术筛选了对北京市空气质量影响大的区域电厂源. 结果表明:近北京地区电厂源对北京市ρ(SO2)的影响从南到北呈递减趋势,其对北京城区、北京全市ρ(SO2)月均贡献值分别为6.97和6.40 μg/m3;影响北京城区ρ(SO2)的电厂排放源主要来自张家口、唐山、天津、石家庄、廊坊和衡水等地区,占ρ(SO2) 总贡献值的83.2%;为缓解北京采暖期间SO2污染压力,应首先控制和削减张家口、天津、唐山、石家庄地区SO2排放量大的电厂源.   相似文献   

10.
随着燃煤电厂大气污染物排放标准越来越严格,单一的脱硫、脱硝、除尘控制技术已逐步向多种污染物联合脱除技术转变。针对超低排放背景下单一烟气处理技术存在的问题,提出了燃煤电厂"烟气处理岛"的概念,探讨了燃煤电厂"烟气处理岛"的研究内容,对燃煤电厂污染物控制系统建设和改造有一定的借鉴意义。  相似文献   

11.
工业炉窑是大气污染物的重要排放源之一,针对除钢铁、水泥、焦化、石化等行业外的非重点行业炉窑,研究二氧化硫、氮氧化物、颗粒物的排放量及其在2025年的削减潜力,以期对“十四五”时期炉窑污染治理提出建议.非重点行业炉窑具有行业和区域分布广、底数不清、治理水平差、对环境质量影响大等特点,基于第二次全国污染源普查结果,二氧化硫、氮氧化物、颗粒物排放量分别占工业源排放总量的34.0%、21.2%、9.9%.研究充分考虑“十四五”经济社会发展特征和生态环境保护需要,建立了淘汰小型燃煤炉窑、清洁能源替代、提高末端治理设施去除率等减排方案,设定了两种减排情景(其中,情景1为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至炉窑平均去除率,情景2为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至工业源平均去除率),估算了2025年不同情景下非重点行业炉窑二氧化硫、氮氧化物、颗粒物的削减潜力及其排放量.结果表明:维持2017年管控水平下,2025年二氧化硫、氮氧化物、颗粒物排放量较2017年分别增加42.32%、40.11%、45.82%;情景1下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少0.84%、增加20.86%、减少71.49%;情景2下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少63.30%、16.67%、68.51%.根据情景分析结果,结合典型大气污染物“十四五”减排策略,明确了增设末端治理设施的行业,以及开展小型燃煤炉窑清理整顿和清洁能源替代的区域等.   相似文献   

12.
基于中国2011~2015年发电企业逐台燃煤机组基础信息、活动水平及控制技术等,建立了燃煤电厂NOx排放量计算方法和排放数据库.利用该方法,计算了2011~2015年逐个机组NOx排放量,分析了2010~2015年中国燃煤电厂NOx排放特征.结果表明:中国燃煤电厂NOx排放量自2010年的1073万t增加到2011年的1132万t,达到排放峰值,随后逐年下降,到2015年下降到522万t.燃煤电厂NOx排放地区分布不均衡,2015年内蒙、山东、江苏、江西、河南、河北、辽宁是排放量最大的省份,占中国燃煤电厂排放总量的48.8%.上海、江苏、天津、宁夏、山东、浙江和山西是排放强度最大的省份.从机组规模来看,单台容量在300~≤600MW之间的燃煤机组是NOx排放的主要来源,当机组装机容量从100MW提高到1000MW时,NOx平均排放绩效从2.91g/kWh降至0.48g/kWh,下降了近84%,这主要是由于装机容量越大的燃煤发电机组,电力工业技术水平和污染治理水平越高,NOx平均绩效越低,环境行为越好.  相似文献   

13.
燃煤电厂污染物排放实施超低排放是中国燃煤电站绿色火电的大方向,煤电进入超低排放阶段,实施超低排放标准对电厂的污染物治理提出了更为苛刻的要求。为了在环境影响评价中落实超低排放可行措施,使SO2和NOx 达到超低排放标准,本文根据山西省低热值燃煤电厂实际环境影响评价过程中遇到超低排放工艺技术路线的问题,针对煤粉锅炉燃用高灰分、高硫分、热值低的煤质情况,介绍了大气污染物脱硫和脱硝的超净排放工艺方案,指出采用“石灰石-石膏湿法”脱硫双循环技术;锅炉低氮燃烧技术+SCR脱硝工艺技术(3+1层),可以满足山西省超低排放限值要求。  相似文献   

14.
以燃煤电厂烟气颗粒物控制技术或组合为研究对象,在文献调研和专家问卷调查基础上,针对燃煤电厂一次PM2.5排放特征,构建了包含环境、经济和技术三方面共16项四个层次的评价指标体系;采用模糊综合法对7种颗粒物控制技术及其组合开展了综合评估.结果表明:在综合分析或着重环境性能的情况下,7种单一或组合控制技术的优先顺序为:低低温静电除尘配高频电源+湿式静电除尘≈静电除尘配高频电源+湿式静电除尘 > 电袋复合除尘 > 静电除尘+湿式静电除尘 > 袋式除尘 > 静电除尘 > 电凝并+静电除尘.若优先考虑经济因素,静电除尘为最优选择;优先考虑技术性能则袋式除尘为最优选择.  相似文献   

15.
介绍了美国俄亥俄州R.E.Burger燃煤电厂采用电催化氧化(ECO)技术控制多种污染物排放的示范项目。该ECO系统可以有效减少SO2,NOX,PM2.5,Hg的排放量,实现多污染物控制一体化,副产品可以有效利用,投资费用低,占地面积少。  相似文献   

16.
利用情景分析法建立了2010—2030年我国电力行业SO2、NOx、PM10、PM2.5的排放控制情景,分析了发电技术结构调整、加严及进一步加严末端控制措施(脱硫、脱硝、除尘等)的减排成本和效果. 结果表明:到2030年,相对于趋势照常情景,若加严末端控制设施,将新增336×108元投资,SO2、NOx、PM10、PM2.5排放量可分别减少121×104、852×104、18×104、10×104 t;若进一步加严末端控制措施,将再新增25×108元投资,NOx、PM10、PM2.5可分别进一步减排45×104、23×104、15×104 t;若进行发电技术结构调整,将新增2 383×108元投资,SO2、NOx、PM10、PM2.5排放量分别减少248×104、420×104、18×104、10×104 t;2020年和2030年发电技术结构调整带来的单位污染物减排成本分别为15 374和34 239元/t,是末端控制措施加严的3倍以上,但其能提供更大的SO2减排空间并具有降低能耗和减排温室气体等协同效益. 从成本效果角度考虑,建议采用加严末端控制措施方案,同时调整发电技术结构、合理发展清洁发电技术,以为污染物减排提供更大空间.   相似文献   

17.
燃煤机组超低排放改造对汞的脱除效果研究   总被引:1,自引:0,他引:1  
燃煤烟气中汞污染的控制是目前重要的环保课题之一,燃煤电厂利用现有的脱硝、脱硫、除尘设备去除汞,文章分析燃煤电厂烟气净化设备超低排放改造后汞的排放水平,说明现有废气处理设施超低排放改造,既能有效降低烟尘、二氧化硫、氮氧化物排放浓度,也有利于汞的去除,燃煤机组超低排放改造后汞的排放浓度远低于现行0.03 mg/m3的限值;通过分析燃煤电厂现有烟气净化设备对汞的协同去除效果和脱除汞的原理,提出了未来燃煤烟气汞污染控制措施的建议.  相似文献   

18.
环境技术验证评价是新环境技术评价的有效方法之一。烟气超低排放是重点行业大气污染控制的发展趋势。开展燃煤电厂超低排放技术验证评价研究是环境技术验证评价在行业精细化应用的创新。在分析燃煤电厂大气污染物超低排放技术特点的基础上,运用层次分析法、调查研究法等构建了燃煤电厂超低排放技术验证评价指标体系,提出验证评价指标获取方法、测试周期和样本量、采样频率、指标评价方法。以超低排放组合技术"SCR脱硝+干式电除尘+石灰石-石膏湿法脱硫+湿式电除尘"为例进行应用验证,该技术利益相关方认为验证结果能够客观、科学、公正、有效地反映该技术的技术、经济、环境影响、维护管理等指标的真实情况。  相似文献   

19.
程轲  王艳  薛志钢  田宏  易鹏 《环境科学研究》2015,28(9):1369-1374
为评估GB 13223─2011《火电厂大气污染物排放标准》实施对燃煤电厂大气Hg(汞)减排的影响,采用“自下而上”排放因子法,对燃煤电厂大气Hg排放量进行了估算,通过设计不同发展情景,对排放标准实施条件下我国燃煤电厂大气Hg减排量(不含港澳台地区数据,下同)进行了预测. 结果表明:不同能耗情景下,预计2015年燃煤电厂的煤炭消费量为18.5×108~20.3×108 t,2020年煤炭消费量可达19.7×108~22.5×108 t;GB 13223─2011实施后,大气污染控制设施包括ESP(静电除尘器)、FF(袋式除尘器)、WFGD(湿法脱硫)和SCR(选择性催化还原脱硝)的应用比例亟需提高,控制设施面临提效改造,主要控制技术组合SCR+ESP+WFGD在2015年和2020年的应用比例将达到40%、75%;改造后技术组合FF+WFGD、ESP+WFGD、SCR+ESP+WFGD可分别实现90%、85%、80%的脱Hg效率. 由此可为我国燃煤电厂大气Hg排放带来巨大的协同减排潜力,与2010年约119 t的排放水平相比,2015年和2020年在低能耗情景下,我国燃煤电厂大气Hg减排幅度可分别高达38%和39%. 为进一步提高燃煤电厂大气的Hg减排量,建议逐步推广应用活性炭喷射(ACI)等技术.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号