首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 375 毫秒
1.
为探究河北省中南部CO2时空分布特征,利用空中国王350飞机搭载高精度CO2分析仪和相关辅助设备,对石家庄、邢台城市上空(600~5600m)CO2浓度进行飞机探测,探测期间共飞行4架次,取得7组CO2浓度垂直廓线数据,探测期间CO2浓度最小值为398.3×10-6,最大值为414.6×10-6,多架次垂直方向上平均浓度为(401.4~403.9)×10-6.CO2浓度随高度的增加,无明显规律性变化.边界层顶位于1000~2000m左右高度,在边界层顶以下受近地面排放源的影响较大.2500m高度上,其浓度随高度变化均存在一个短暂减小的趋势,高空基本不受近地面污染源的影响,CO2浓度接近地面本底浓度.在同一高度上,白天CO2浓度均略高于夜间.夜间CO2在混合层聚集,混合层顶浓度达最大.邢台上空的CO2与CH...  相似文献   

2.
利用最新的AIRS卫星观测资料分析了2002年12月~2016年11月全球和东亚地区(70°~140°E,10°~55°N)CH4浓度的时空变化分布特征.研究发现,2003~2016年,全球CH4年平均浓度从1774.2×10-9增加到1789.1×10-9,年增长率约为1.1×10-9/a;东亚地区CH4年平均浓度从1811.5×10-9增加到1841.0×10-9,年增长率约为2.0×10-9/a.在美国西南部、南美洲南部、澳大利亚东南部、中国青藏高原和东北地区等地上空,CH4浓度增幅比较明显,而在北美洲的东北部上空,CH4浓度出现负增长.北美洲东北部和俄罗斯东部等地上空CH4浓度的变化与温度变化呈正相关;如在冬季,该地区温度与周围地区相比更低,同时CH4浓度更低.本文利用近10a的卫星数据获得了CH4浓度的垂直廓线,显示不同纬度带CH4浓度均随着高度的升高逐渐减小,且高纬度地区CH4浓度减小的最快.近年来,在低纬度地区对流层中低层CH4浓度变化较为明显.在对流层低层(850hPa),北半球CH4浓度随着纬度增加逐渐变大;在南半球则随着纬度增加先减小后变大.而在平流层内,CH4浓度在赤道处最大,且随着纬度的升高逐渐减小.此外,CH4的浓度分布存在明显的季节变化:在北半球,大部分地区夏季CH4浓度高于冬季(约20×10-9~40×10-9),但在撒哈拉沙漠和中国新疆塔里木盆地等地区上空,冬季CH4浓度高于夏季(约40×10-9~60×10?9).在冬季,中国四川西部上空的CH4浓度要比青藏高原上空高(约100×10-9~120×10-9).  相似文献   

3.
为研究河北省中南部对流层内CH4时空分布特征,2018年6~7月利用空中国王350飞机搭载高精度CH4分析仪和相关辅助设备,对河北中南部城市上空(600~5500m)CH4浓度进行飞机探测.探测期间共飞行4架次,取得7组CH4浓度垂直廓线数据.结果表明:探测期间CH4浓度最小值为1884×10-9,最大值为2038×10-9,多架次垂直方向上平均浓度为(1915±90)×10-9.不同探测架次CH4浓度随高度变化趋势有较好的一致性,随高度增加,均出现先增大后减小,后稳定不变的趋势,且在混合层顶以下(约1000m)存在明显分界线.1000m以下,同高度层CH4浓度变化较大,不同架次间浓度相差最大值达124×10-9,同一架次CH4浓度的垂直梯度变化受大气层结影响明显,位温垂直梯度接近零时,CH4浓度的垂直梯度变化不明显.1000m以上,CH4浓度垂直随高度增加呈指数减小,同高度层CH4浓度变化较小,变化偏差在平均值的5%以内,4000m以上,同高度层CH4浓度振幅最小,差值<15×10-9,此时浓度可代表该区域背景大气的平均浓度.石家庄上空同高度层CH4浓度白天整体大于夜间,随高度降低差值变大,说明石家庄白天CH4排放源强度大于夜间.  相似文献   

4.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

5.
光谱纯度是积分路径差分吸收激光雷达最重要的系统参数之一,光谱纯度直接影响CO2数据的探测精度.在模式研究中要求输入观测的CO2数据误差小于1×10-6,对激光器光谱纯度参数设计提出很高要求.本文采用有效吸收截面分析探测反演误差的方法,研究了由光谱纯度带来的CO2柱浓度探测误差,并基于窄带滤波器对光谱不纯能量的抑制作用,对不同带宽的窄带滤波器进行选择和分析,从而达到降低对光谱纯度的要求,提升探测精度的目的,最后讨论了由于窄带滤波器造成的能量衰减所对随机误差的影响.结果表明:当光谱纯度为99.9%,窄带滤波器带宽1GHz,透射率为0.86,脉冲能量为100mJ时CO2探测的系统误差小于0.084×10-6,随机误差小于0.02×10-6,满足探测精度要求.  相似文献   

6.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

7.
运用吹扫-捕集气相色谱法于2016年6月对东海海水和大气中5种短寿命挥发性卤代烃的浓度含量、分布来源特征及海-气通量进行了研究.结果表明,表层海水中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为8.93(0.39~23.49) pmol/L、15.02(4.77~32.75) pmol/L、0.97(0.30~2.16) pmol/L、9.35(6.8~18.46) pmol/L和12.24(2.60~50.04) pmol/L.受陆源输入、水团和生物活动释放的影响,表层海水中CH3I、CH2Br2和CHBrCl2的浓度分布呈现近岸高远海低的趋势,CHBr2Cl和CHBr3浓度呈现点状分布.相关性分析发现CHBr3和Chl-a存在显著相关性,推断浮游植物生物量可能影响CHBr3的浓度分布.大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为3.52×10-12(1.72×10-12~10.00×10-12)、3.82×10-12(0.20×10-12~34.95×10-12)、1.40×10-12(0.46×10-12~6.18×10-12)、1.55×10-12(0.16×10-12~4.66×10-12)和6.63×10-12(2.20×10-12~11.61×10-12).受陆源气团输送、生物生产和气象条件的共同影响,春季大气中5种短寿命挥发性卤代烃浓度分布较为复杂.海-气通量的估算结果表明春季东海是大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3的源.  相似文献   

8.
通过改进WRF-CMAQ模型中非均相反应模块,定量研究了2017年夏季和冬季海盐与含氮气体非均相反应对我国山东沿海地区大气O3浓度的影响.模拟结果表明,考虑海盐气溶胶非均相反应后,山东沿海地区夏季O3小时浓度增加了0.2×10-9~6.6×10-9(0.5%~15.5%),冬季增加了0.8×10-9~15.3×10-9(1.7%~27.4%),ClNO2在夏季和冬季分别增加了100×10-12~250×10-12,300×10-12~650×10-12;夏季O3浓度增加主要集中在山东东部,而冬季O3的增加则覆盖了山东大部分地区,表明海盐非均相反应对冬季O3的影响强度及范围均明显高于夏季.海盐非均相反应引起的O3浓度增加主要发生在日间,特别是8:00~16:00.该反应对渤海及南黄海大气O3浓度也有影响,且在这些海域生成的O3可通过4条传输路径影响山东沿海地区,甚至可影响到济南、菏泽等山东中西部地区(距离山东东部海岸线~350km);海洋大气中O3的传输可造成山东东部沿海O3浓度升高0.2×10-9~15.3×10-9,山东中西部O3升高0.3×10-9~6.2×10-9.  相似文献   

9.
基于五台山站2017年1月~2020年12月的大气CO2连续观测资料,采用平均移动过滤法(MAF)和后向轨迹分析方法,对五台山大气CO2本底浓度及源汇特征进行研究.结果表明:五台山大气CO2浓度受到区域或局地源汇的影响,筛分后的CO2本底小时浓度振幅为44.9×10-6,小于未经筛分的CO2浓度振幅94.7×10-6.2017~2020年CO2本底浓度呈逐年上升趋势,但增幅放缓;抬升浓度占比有所下降,吸收浓度占比波动较小,表明人类活动对CO2浓度的影响逐年减弱,而五台山周边地区陆地生态系统碳汇作用相对稳定.CO2本底浓度夏季最低,秋冬季次之,春季最高;日变化夏季最明显,峰谷值分别出现在05:00和16:00,其他季节日振幅仅在0.7×10-6~1.8×10-6之间.与本底浓度相比,抬升浓度的差异值自10月至翌年3月明显增大,而吸收浓度的差异值在6~9月最显著,分别反映出人为活动排放源以及陆地生态系统吸收汇对CO2本底浓度的影响.源汇浓度日变化均为单峰结构,抬升浓度白天高、夜间低,吸收浓度刚好相反.春、秋和冬季造成CO2浓度明显抬升的地面风向主要为西南风,且随风速的增加CO2浓度能够保持较高水平,而夏季主要为东北偏东风;春、夏季,2~4m/s的风速有利于进一步降低CO2吸收浓度.后向轨迹分析表明,气团远距离输送对源汇浓度的影响除了取决于气团途径区域的CO2排放情况,还与气团的空间垂直输送路径有关.  相似文献   

10.
本研究开发了一套基于直接采样技术的二氧化碳(CO2)垂直廓线采样分析系统,分析近地面至25km高空CO2浓度的垂直分布.系统通过压差实现垂直方向连续采样,利用CRDS高精度分析技术对不同高度样品进行定量分析,计算得到采样区域CO2浓度廓线.于2018年6月13~14日,在内蒙古锡林浩特国家气候观象台利用平流层探空气球平台进行了观测实验.实验室测试显示,CO2分析准确度优于0.06×10-6,精度优于0.08×10-6.外场实验获得区域近地面至25km高空CO2浓度的高分辨率垂直廓线,显示CO2在不同高度的分层结构.考虑不同高度样品扩散作用,系统垂直分辨率在10km高度以下优于580m,在10~20km高度优于3.3km.研究表明:分析系统可搭载在合适探空平台上进行CO2垂直观测,获取浓度廓线,可为传输模式提供数据,并为碳卫星遥感数据提供实测数据校验.  相似文献   

11.
于2019年9月~2020年7月对深圳市福田区路边的大气CO2、CH4、N2O和CO浓度进行了观测分析.结果显示,其观测时段平均浓度分别为(430.8±6.1)×10-6、(2318.5±137.9)×10-9、(332.6±1.6)×10-9和(333.4±121.2)×10-9.CO2与CO浓度的季节变化表现为冬季...  相似文献   

12.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧.  相似文献   

13.
采用质子转移反应质谱仪(PTR-MS)对深圳大学城园区2017年不同季节(分干湿两季)的6种典型OVOCs和其他非甲烷烃类(NMHCs)进行连续在线监测,分析其干湿季的浓度特征与日变化规律,并应用光化学龄的参数化方法开展OVOCs的来源解析.结果表明,在观测的6种OVOCs中,甲醇的平均浓度最高,达10×10-9~12×10-9,其次是乙酸、丙酮和乙醛,约2~5×10-9,甲酸和丁酮的含量最低,仅1×10-9~2×10-9.通过日变化观察到的OVOCs湿季峰值浓度时间明显早于干季,乙醛表现出与臭氧(O3)相似的日变化特征,揭示了其可能存在二次来源;甲醇和丁酮的峰值浓度时间均早于O3,可能存在重要的一次排放源.采用光化学龄模型解析出日间污染物来源比例:在污染较重的干季,甲醇、乙醛、丙酮和丁酮的人为一次源占主导,甲酸和乙酸的二次源是主要贡献者;在较清洁的湿季,天然源成为乙醛、丙酮、丁酮、甲酸和乙酸的主要来源.  相似文献   

14.
采用离子交换法制备了Na-、K-、Co-、NiZSM-5分子筛催化剂.测试了它们催化氧化NO的性能并通过XRD、BET、ICP-MS和Py-IR等表征,结果表明,CoZSM-5分子筛对NO催化氧化具有最高的活性,氧化率达到47%,主要是引入Co离子的ZSM-5表面酸性最适宜NO氧化.同时,在湿度100%条件下,考察了氧气浓度(5%~20%),空速与二氧化硫浓度(0~200×10-6)等对CoZSM-5分子筛催化氧化NO性能的影响.实验结果表明,在30℃、空速14400h-1和相对湿度100%条件下,SO2浓度在200×10-6以下对催化氧化NO基本无影响.56h催化剂稳定性实验结果表明,在30℃、NO进口浓度600×10-6、空速18000h-1和饱和水汽(RH:100%)条件下,CoZSM-5分子筛催化剂对NO的氧化率可维持在40%左右.因此CoZSM-5分子筛催化剂具有良好的NO氧化稳定性、抗水性和一定的抗硫性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号