首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为满足环境管理部门"O3污染过程不漏、AQI类别准确和AQI范围预报准确"的要求,基于大气箱式模型和相似案例分析,引入Ox指标原创性提出"Ox增减量"O3人工订正预报方法。介绍了该方法的预报思路、预报要点和步骤、历史相似案例库构建与基于大气条件预报的判别分析、方法普适性和局限性等,以期为提高区域、城市O3业务预报准确率提供技术参考。以东部沿海城市青岛市为研究案例,结果显示,2020年6—9月24 h人工订正AQI类别预报、AQI范围预报准确率分别为91%和68%,比同期业务化运行的WRF-Chem数值模式预报准确率分别提高19%和25%,应用该预报方法可有效提高O3污染过程预报准确率。  相似文献   

2.
多尺度环境空气质量预报业务产品测试研究   总被引:1,自引:1,他引:0  
为了探讨NAQPMS数值模式预报产品及其他预报业务所需产品在国家-区域-城市不同尺度单位的有效使用率、重污染过程中的作用,以及不同地区(城市)预报业务需求及作业产品需求偏差,选取17家单位进行测试研究。分析数据显示:15类参与研究产品均为各省市监测中心空气质量日常预报业务的开展作出了重要贡献,NAQPMS数值预报产品准确率最高可达到84.72%,省会城市准确率略低,总体平均可达50.21%,重污染过程的平均捕捉准确率为52.33%;研究测试产品在各尺度的获取时间均可控制在2.5 h左右。研究结果表明,指导产品能基本反映污染物形成、发展及变化趋势,明确不同地区城市预报业务需求及产品偏差,在PM_(2.5)和O_3预报准确率和重污染过程捕捉预报结果偏低等方面有待加强。  相似文献   

3.
基于多模式(NAQPMS、CMAQ、CAMx、WRF-Chem)空气质量数值预报业务系统的滚动预报结果,结合站点观测资料,评估了最优化集成方法在城市臭氧数值预报中的可行性和预报效果。一年的评估结果表明:当训练期为15 d时,最优化集成方法能够得到相对较好的结果。总体而言,最优化集成方法对城市臭氧浓度变化趋势和浓度水平的预报效果明显优于单个模式,且在大部分城市优于多模式的最优预报,其预报值和观测的相关系数提高0.11以上,均方根误差降低约10μg/m~3;该方法对城市臭氧污染等级的预报能力也明显优于单个模式,特别是轻、中度污染。此外,在模拟偏差较大的城市,最优化集成方法对预报效果的改进更为显著;在模拟偏差较小的城市,该方法仍可进一步提升预报效果。  相似文献   

4.
气象因子对臭氧的影响及其在空气质量预报中的应用   总被引:1,自引:0,他引:1  
为提高重庆市臭氧(O_3)预报准确率,利用2013—2015年5—10月O_3监测数据和气象数据,通过主成分分析、逐步回归分析等方法,确定了影响重庆O_3浓度的主要气象因素为最高温度、温差、太阳辐射、降水量、相对湿度、水气压和压差;通过基于O_3污染水平相似的主要气象控制因子筛选和最优组合的预报结果优化方法,提高了O_3预报准确率,使2016年5—8月O_3的AQI类别预报准确率由57.7%增至72.4%,O_3超标的预报准确率由38%增至46%。  相似文献   

5.
2014年起,上海市围绕城市及长三角区域空气质量预测预报和重污染预警需求,搭建了长三角区域空气质量数值预报系统。该系统综合应用了模式参数化方案比选、排放清单耦合处理、大气化学资料同化、大数据集合订正等关键技术,集合模式PM2. 5和O3小时浓度偏差为-10%~10%,提升了区域PM2. 5和O3浓度模拟效果。该系统实现了污染在线源解析和多排放情景模拟等功能的业务应用,应用于2018年首届中国国际进口博览会保障中,为上海市及长三角区域空气质量业务预报和重大活动保障提供了业务产品支撑。  相似文献   

6.
在2020年8月11—15日的一次典型光化学污染过程中,在江苏省东南沿江传输通道城市同步开展了大气挥发性有机物(VOCs)的加密观测,使用基于观测的OBM模型诊断了典型城市臭氧(O_(3))生成机制,并分析其污染成因,梳理了通道城市VOCs化学组成特征、O_(3)生成潜势(OFPs)及污染日与清洁日的差异。结果表明,监测期间大部分城市呈现首尾(8月11和15日)O_(3)超标、中间达标的特征,气象要素影响较小,与前体物关联更为密切。沿江通道城市污染日VOCs总体积分数为15.79×10^(-9)~54.9×10^(-9),均值为31.88×10^(-9),是清洁日城市总体积分数均值(18.08×10^(-9))的1.76倍。南京、镇江、扬州等城市O_(3)生成总体处于VOCs控制区,泰州8月11日处于NOx控制区。各城市VOCs化学组成均以烷烃为主(平均占比31.8%),其次是含氧挥发性有机物(OVOCs)(26.5%)和卤代烃(19.1%),其他组分占比较低。污染日烷烃、炔烃和芳香烃的体积分数升幅显著高于其他类组分,尤其是芳香烃,增幅为45.1%~296.3%。各城市OFPs中,优势组分均为芳香烃和烯烃,其中乙烯、丙烯、甲苯、乙苯和间对二甲苯等物种质量浓度在污染日上升显著,对O_(3)生成影响较大。  相似文献   

7.
对比分析法在环境空气质量预报业务中的应用   总被引:1,自引:0,他引:1  
通过分析京津冀及周边区域环境空气质量预报的实际案例,从实时监测、污染源、大气条件以及数值预报模拟4个方面阐述了对比分析法在空气质量预报业务中的应用,帮助预报员比较类似污染源排放条件下的大气条件变化或者类似大气条件下的污染源变化,以便进一步开展量化分析。研究结果显示:利用时间同比、空间比较和大气条件对比的分析方法,能够判断在类似污染源排放和相似大气条件下,主要污染物的浓度水平、重污染发生、影响范围、持续时间、严重程度等污染特征以及污染物的水平传输影响等;采用污染源变化对比分析法,能够获得在类似大气条件下,污染源排放的减少或剧增对主要污染物浓度水平的影响程度;通过数值预报模式结果对比分析,能够获得在类似的污染源排放条件下,大气环流形势的稳定程度和变化情况,从而判断其对污染物浓度水平的影响。对比分析法是开展京津冀及周边区域环境空气质量预报业务中的重要环节,有利于持续提高空气质量预报的准确率,供全国空气质量预报员开展辖区空气质量预报时参考。  相似文献   

8.
利用2017年佛山市8个国控监测点位的6项常规大气污染物自动监测数据,研究细颗粒物(PM_(2.5))、可吸入颗粒物(PM 10)、臭氧(O_(3))的时空变化和复合污染特征,并采用单颗粒气溶胶质谱仪对佛山市大气PM_(2.5)进行来源解析,分析O_(3)与二次气溶胶的协同增长关系。结果表明,2017年佛山市空气质量综合指数(AQI)为4.75,主要的空气质量污染物为PM_(2.5)、二氧化氮(NO_(2))和O_(3),除O_(3)呈现第2,3季度较高外,其他5项污染物均呈现第1,4季度较高的趋势。ρ(PM_(2.5))和ρ(PM_(2.5))/ρ(CO)在1—4月和11,12月较高,二次生成强度较大。机动车尾气源、燃煤源和工业工艺源是大气PM_(2.5)的主要来源。佛山市中心城区等道路密集以及交通枢纽地区的ρ(NO_(2))较高,机动车尾气排放是大气NO_(2)的主要来源。O_(3)污染主要发生在4,5,7—10月。ρ(O_(3))和ρ(PM_(2.5))/ρ(CO)的日变化均在12:00—17:00达到峰值。ρ(PM_(2.5))随光化学活性水平增强而提高,高度和中度光化学活性水平下ρ(PM_(2.5))/ρ(CO)明显大于轻度和低光化学活性水平。在统计时段,PM_(2.5)和O_(3)协同增长的时间占37.3%,O_(3)污染对二次气溶胶的氧化生成有明显的促进作用。  相似文献   

9.
随着社会经济的快速发展,我国臭氧污染日益严重,因此,研发出能定量评估气象条件对臭氧污染影响程度的诊断指数,成为提高和改善气象服务质量的重要任务之一。利用中国大陆地区2018年温度、总云量、风速、风向、相对湿度等气象场数据与臭氧浓度数据,研究臭氧污染敏感气象条件,统计各气象因子分布在不同数值区间时发生臭氧污染事件的相对频率(即分指数),按照分指数最大值和最小值的差值大小进行排序,筛选出10个与臭氧污染密切相关的气象因子,将10个气象因子的分指数进行累加,即得出臭氧综合指数。随后,对各地构建臭氧综合指数时采用的气象要素进行统计,得到出现频率最高的3个气象要素,并参考这些气象要素构建了臭氧潜势指数。分别以臭氧潜势指数和臭氧综合指数对北京市2019年臭氧日最大浓度建立拟合预报模型,结果表明:两类指数的拟合预报值与实测值有着相似的变化趋势;利用臭氧综合指数计算得到的预报值与实测值的相关系数为0.76,优于利用臭氧潜势指数计算得到的预报值与实测值的相关系数(0.64)。  相似文献   

10.
对2019—2022年山东省16个市的细颗粒物(PM2.5 )污染特征进行了分析,并对2021和2022年的4个数值模式[社区多尺度空气质量模拟系统(CMAQ)、扩展综合空气质量模型(CAMx)、区域气象-大气化学在线耦合模式(WRF-Chem)、嵌套网格空气质量预报系统(NAQPMS)]及集合预报模式预测的效果进行评估。结果表明:2019—2022年山东省PM2.5 年均质量浓度逐年降低,污染程度逐步减轻,但在1—3,11—12月,PM2.5 质量浓度超标现象较为普遍。2021年底更换污染源清单后,2022年5个模式的24 h级别准确率和相关系数(r)同比升高,均方根误差(RMSE)同比降低,模式预报准确率有所提升,但由于参数调整略大,CMAQ、CAMx、WRF Chem、集合预报模式易漏报或偏轻预报PM2.5 的中度污染和重度污染天气。由于NAQPMS模式在更换污染源排放清单时,同时改进了非均相化学反应机制,因此对PM2.5 不同污染类别尤其是中度污染、重度污染的预报准确率明显提升。  相似文献   

11.
Prediction of extreme ozone levels in Barcelona, Spain   总被引:1,自引:0,他引:1  
Barcelona is one of the most polluted cities in Western Europe, although our levels of air pollution are within the World Health Organisation air quality guidelines. However, high concentrations of air pollution have not been studied yet. Ground ozone levels is a topic of considerable environmental concern, since excessive level of ozone are taken as indicative of high pollution. In terms of the air quality guidelines ozone levels higher than 100 µg m–3 can start to be health-hazards for human health. Our objective is to report a detailed analysis of ozone data exceeding the thresholds established by the air quality guidelines. Data analysed were collected in two measurement stations in Barcelona, for the reference period 1991–1996. Applying statistical techniques commonly used in the analysis of extreme values, mainly the Peak Over Threshold method was used for in this study. The analysis reveal that the ozone threshold values for the protection of human health has exceeded many times in both stations. The estimated return values for 3, 10, and 40 yr exceed the threshold value for information to the public of almost once in both stations, also it seems to be unlikely that the threshold value for warning to the public will be exceeded in 40 yr.  相似文献   

12.
Athens has a major problem of ozone air pollution due to its climate which is dominated by hot and dry summers with intensesunshine. As a result there is a high violation of the air quality limits of ozone. By comparing ozone air pollution betweenweekdays and weekends it is possible to estimate the effect of the reduction of primary pollutants causing the formation ofozone on the levels of this pollutant. Thus it was estimated thatwhile during the weekends the concentrations of the ozone precursors (nitrogen oxides and volatile organic compounds) werereduced by the order of 10–20%, the effect on ozone levels was lower.  相似文献   

13.
成都市夏季近地面臭氧污染气象特征   总被引:9,自引:3,他引:6  
利用2016年7月成都市8个环境监测站点的臭氧、NO_2的监测资料以及成都市国家基准气象站和基本气象站的观测资料,对成都市夏季臭氧、NO_2浓度和气象要素的日变化特征和臭氧污染过程进行了分析。研究结果表明:成都市臭氧污染受综合气象条件和NO_2浓度的影响,高温、低湿、强辐射有利于臭氧大量生成,NO_2浓度高低决定了臭氧浓度的峰值大小;在污染期间,大气边界层高度远高于本地平均水平,数值约为平均水平的2~3倍;成都市臭氧污染的主要影响因子存在地区差异,成都市区的臭氧主要来自于自身的光化学反应,而灵岩寺地区的臭氧来自于VOCs和大气水平输送。  相似文献   

14.
空气质量数值模型的构建及应用研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
综述了近年来国内外空气质量模型的发展历程、空气质量数值模型构建的关键技术以及应用研究。指出了目前空气质量数值预报及应用主要面临气象条件,尤其是大气边界层模拟、大气污染物排放源和大气物理化学过程等问题。提出,应当通过规范化制作和完善排放源清单数据,建立统一的排放源分析标准,提高排放源数据的准确性;多向发展观测手段,加大监测密度和频率,并进行实验室化学分析,提出适合我国的大气物理化学机制。就空气质量模式而言,对模式方案进行优化,以及使用气象、卫星资料同化等技术手段,将其与观测相结合,构建监测与预报系统相结合的统一体系,应用于多平台。  相似文献   

15.
当前中国大气污染形势依然严峻,挥发性有机物作为臭氧的重要前体物之一,对环境空气质量的影响日益突出。建设全国重点区域光化学监测网络,可为全面加强挥发性有机物污染防治工作和有效监测光化学污染提供基础监测平台。笔者通过分析中国光化学监测的现状和面临的挑战,探讨了中国光化学监测网络建设的发展思路,并提出了各层级环境监测单位、科研院所、设备企业和监测服务公司的协同发展策略。  相似文献   

16.
海口市臭氧污染特征   总被引:8,自引:7,他引:1  
基于2013—2015年海口市4个空气质量自动监测站点数据,结合气象资料,分析了海口市O_3的污染特征。结果表明:海口市O_3总体优良,优良天数比例为99.4%,污染天数均为轻度污染;在良和污染天数中,O_3作为首要污染物的天数占40%,超过其他5项污染物占比。海口市10月O_3浓度最高。O_3月均浓度与温度呈负相关关系,同时与风向有密切关系:5—8月气温较高,以南风为主,O_3浓度较低;1月北风频率较高,易受外来污染传输作用,O_3浓度相对较高。O_3超标日以东北风为主,日变化并未呈现单峰型特征,12:00—22:00时段O_3浓度在10%范围内小幅变化。台风外围型和北方冷高压底部型是造成海口市O_3超标的2类典型天气形势。  相似文献   

17.
中纬度平流层臭氧深度侵入是造成对流层至近地面臭氧浓度突增的原因之一。筛选春夏季臭氧浓度升高时段的高分辨率大气再分析数据ERA5,以位涡值的下沉趋势分析了对流层顶折叠位置及变化过程;以AIRS数据反演了臭氧浓度、一氧化碳浓度和相对湿度的垂直廓线,并估计了其分布及相关性;以近地表污染物浓度变化、HYSPLIT模型后向轨迹分析结果证实了臭氧侵入气团的运移轨迹和局地效应;通过激光雷达监测结果观测臭氧垂直浓度分布,确定了臭氧浓度最大值所处高度,判定了受影响近地点的浓度升高时刻;以边界层高度变化、气象条件分析结果及当地与周边城市地面监测数据的逐小时变化情况等综合信息,进行了区域确认和近地面影响判定。通过以上数值综合分析,对城市地区受平流层臭氧深度侵入影响的过程和具体时间进行了详细再现,可为排除非人为排放因素导致的近地表臭氧浓度增加提供回溯分析,为臭氧污染防控决策提供依据。  相似文献   

18.
近年来,臭氧已成为许多城市环境空气的主要污染物之一。笔者分析了2020年海口市5个不同方位代表性监测站点逐小时空气质量监测数据及对应站点的气象要素监测数据。研究结果表明:海口市2020年环境空气污染程度为三级以上的天数有11d,其首要污染物均为臭氧。臭氧浓度高值时段主要出现在10-12月。浓度最大值主要出现在每日14:00-17:00,最小值出现在每日05:00-08:00。气象要素日均值与臭氧浓度相关性大小依次为最高温度>平均温度>相对湿度>降水量>日照时数>风速。台风外围下沉气流和东北气流的共同影响是导致海口市臭氧浓度超标的主要因素,下沉气流更有利于低层大气中臭氧的堆积,同时在东北气流影响下,上游区域污染物的传输也会导致海口市臭氧浓度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号