首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于UNMIX模型的夹皮沟金矿区土壤重金属源解析   总被引:24,自引:12,他引:12  
艾建超  王宁  杨净 《环境科学》2014,35(9):3530-3536
采集松花江上游夹皮沟地区的土壤样品,测定了16种金属元素的含量,应用美国环境保护署推荐的UNMIX模型进行了土壤重金属的源解析研究,并结合克里格插值法提取的Hg、Pb和Cd浓度等值线图与实际的调查,佐证源解析的结果.研究表明:1土壤样品中Cd、Hg、Pb、Ag浓度较高,超过吉林省土壤背景值,富集程度明显;2UNMIX方法解析出4个土壤重金属污染来源:源1代表选矿、公路交通及垃圾排放等人类活动的污染,源贡献率为39.31%;源2代表岩石风化和生物作用,贡献率为13.87%;源3为土壤母质和施用化肥、居民燃煤导致的综合污染源,贡献率23.93%;源4代表铁矿开采及运输,贡献率为22.89%.3研究区土地利用类型、人类活动调查、Hg、Pb、Cd含量分布特征与UNMIX模型解析的结果是基本吻合的.  相似文献   

2.
采矿活动和高地质背景被认为是造成喀斯特地区土壤重金属污染的重要因素. 为了探究采矿活动和成土母质对喀斯特地区土壤重金属积累的影响,利用UNMIX模型和空间分析相结合的方法对广西北部典型金属工业区—刁江流域105个土壤样品中重金属(Cd、As、Pb、Cr、Ni)的分布特征与主要来源进行了研究,并将UNMIX模型源识别结果直接纳入GIS进行空间分析,对比采样点的主导源空间分布与污染源之间的关联性. 结果表明:①研究区土壤中w(Cd)、w(As)、w(Pb)、w(Cr)、w(Ni)的平均值为1.21、19.4、42.1、80.9、31.9 mg/kg;研究区土壤污染以Cd和As复合污染为主,个别采样点存在轻度的Pb污染. ②母质类型、土壤类型、土壤pH和工矿企业是影响重金属积累的重要因素. 对比分析可知,由碳酸盐岩母质发育而来的土壤和偏碱性土壤中重金属的平均含量较高;人为土中Cd、As和Pb的积累较明显,铁铝土中会出现Cr和Ni的共富集;污染影响区内w(Cd)、w(As)、w(Pb)偏高. ③源解析分析显示,研究区土壤重金属存在两类污染源,分别为土壤母质源(源1)、工农业混合源(源2),占比分别为68.45%和31.55%;土壤母质源(源1)对Cr和Ni的贡献占主导作用;工农业混合源(源2)对As、Pb的贡献高于其他重金属;研究区Cd的积累由土壤母质源(源1)和工农业混合源(源2)共同主导. 研究显示,研究区土壤重金属污染水平整体较高,这既与碳酸盐岩中固有的高重金属浓度有关,也与碳酸盐岩风化过程中残留富集导致的浓度放大效应有关,并且研究区多年的工矿业活动与河水灌溉进一步加剧了研究区农田的重金属污染程度.   相似文献   

3.
基于正定矩阵因子分析模型的城郊农田重金属污染源解析   总被引:10,自引:0,他引:10  
城郊农田是城市农副产品的重要生产基地,其土壤环境质量直接影响人群的健康状况.本研究采用200 m×200 m网格布点法采集DL市城郊农田表层土壤样品246个,分析土壤中重金属Cd、Hg、Zn、Pb、Cu、As、Ni、Cr和Mn的含量分布特征.运用正定矩阵因子分析法(PMF)对研究区9种重金属污染来源及其贡献率进行了解析.结果表明:工业污染源贡献率29.74%,农业与污灌复合污染源贡献率19.93%,自然母质源贡献率35.98%,大气沉降源贡献率14.35%.其中,Hg主要来源于大气沉降源,贡献率为67.23%;Pb、Cu和Zn主要来源于工业污染源,贡献率分别为67.58%、40.65%、35.51%;Ni、Cr和Mn主要来源于自然母质源,贡献率分别为68.82%、67.16%、72.32%;Cd、As主要来源于农业与污灌复合源的影响,其贡献率分别为71.30%、47.53%.由PMF模型解析结果可知,工农业生产等人为因素(64.02%)是造成城郊农田土壤重金属污染的主要来源.  相似文献   

4.
PCA-APCS-MLR和地统计学的典型农田土壤重金属来源解析   总被引:1,自引:1,他引:0  
王美华 《环境科学》2023,44(6):3509-3519
人类活动往往会增加表层土壤重金属含量,进而影响了区域土壤重金属的精确定量与评估.为系统研究浙江省西部石煤矿山周边典型农田土壤重金属污染源的空间分布特征及其贡献率,采集并分析了耕地表层土壤样品和农产品中Cd、 Hg、 As、 Cu、 Zn和Ni等重金属,重点探讨各元素地球化学特征并对农产品进行生态风险评价.采用相关性分析、主成分分析(PCA)和绝对主成分得分-多元线性回归受体模型(APCS-MLR),解析了该地区土壤中重金属污染的来源和源贡献率,并采用地统计学分析法对土壤中Cd、 As的空间分布特点进行了分析.结果表明,研究区内6种土壤重金属(Cd、 Hg、 As、 Cu、 Zn和Ni)含量都超过风险筛选值,其中Cd和As含量超过风险管制值,其超标率分别为36.11%和0.69%,而农产品中Cd也存在严重超标.通过分析认为研究区土壤重金属污染源主要有2个:源1(Cd、 Cu、 Zn和Ni)为矿业活动源和自然源,对Cd、 Cu、 Zn和Ni的贡献率分别为78.53%、 84.41%、 87%和89.13%;源2(Hg和As)以工业源为主,对Hg和As的贡献率分别为83.22%和82.41%...  相似文献   

5.
准确评价地块尺度的农田重金属污染状况及识别土壤重金属污染成因对农田土壤生态保护具有重要的实践价值。经长株潭重金属污染耕地修复综合治理试点调查发现,湘潭县部分远离工矿企业的地块存在成因未明的重金属Cd污染,文章选取湘潭县Y镇某Cd污染水田地块为研究对象,通过测定土壤中重金属含量,基于内梅罗污染指数法和UNMIX模型,评估土壤重金属污染状况,识别其污染成因。结果表明:(1)研究区生态环境整体处于中等风险状况,水田土壤中元素Ni、Cr、Pb、Zn、Cd、Hg、As的含量均值分别达到了湖南省土壤环境背景值的149%、158%、246%、144%、554%、274%、135%,以农用地土壤污染风险筛选值作为标准,Cd的点位超标率达到了45.83%,综合污染指数达到了2.27,污染较为严重;(2)UNMIX模型对地块尺度的农田重金属污染源解析问题具有适宜性。Ni、Cu、Cr、Pb、Hg、As含量变化主要受土壤自身理化性质的影响,而土壤中Zn、Cd主要来源于人为活动,无序的农业投入是造成Cd污染异常的主要原因。  相似文献   

6.
准确定量识别农田土壤重金属的人为污染来源对于后续实施精准防控具有重要意义。采集典型农业区土壤样品,基于富集因子法和多元线性回归-绝对主成分得分(MLR-APCS)模型对农田表层土壤重金属的人为来源进行定量识别研究。结果表明:研究区农田表层土壤中Pb、Cu、Zn、Cr、Ni均受到不同程度的人为污染影响,其平均含量相比当地背景土壤分别提高了112.37%、71.21%、59.38%、69.67%和64.54%。5种重金属富集因子顺序为Pb>Cu>Cr>Ni>Zn。其中,Pb总体已达到中等富集水平,来自人为污染源含量占比超过50%。基于人为源重金属含量,大气沉降和有机肥施用被识别为该研究区2种主要人为重金属污染来源。MLR-APCS模拟进一步表明:大气沉降对Pb、Cr、Ni的污染贡献率分别为42.41%、37.58%和37.26%,而有机肥施用对Cu、Zn的污染贡献率分别为41.67%和39.39%。综上,提出了一种可靠的农田土壤重金属人为来源定量识别方法,可推广应用于其他相似区域。  相似文献   

7.
为解析湖北省枝江、当阳两市农田土壤重金属来源及贡献率,采集了研究区水稻田表层土壤和成土母质、沟渠底泥、降水、大气降尘、化肥这5类投入品样品,测定了砷(As)、铬(Cr)、铅(Pb)、镉(Cd)和汞(Hg)5种元素含量.同时,对农田土壤重金属含量进行主成分分析、空间分析,并利用UNMIX、PMF模型对比验证使源解析结果在源分配上更为可靠,再结合对投入品的描述性统计分析,从源与汇两个角度对比分析并选择更符合研究区实际情况的源解析结果,定量解析农田土壤重金属的来源.结果表明:As、Cd和Pb含量均值分别为土壤背景值的1.14、1.51和1.12倍,Hg和Cr含量最大值分别为背景值的17.63和1.35倍.除Hg存在少部分最大值高于风险筛选值外,土壤中As、Cr、Cd、Pb含量均低于风险筛选值.5种重金属均表现为中等强度变异,其空间分布图也表明存在空间变异性.UNMIX和PMF模型的解析结果在源分配上基本一致,结合对投入品的描述性统计分析,确定PMF模型的解析结果更符合研究区实际情况.PMF的解析结果表明:Hg主要来源于农药施用和废弃物混合源,该源的相对贡献率为14.68%;Pb和Cr主要来源...  相似文献   

8.
为探明云南金子河流域耕地土壤重金属污染现状与主要来源,有效开展土壤污染防治, 通过土壤采样与数据统计分析评价了金子河流域典型耕地的重金属污染风险,采用指示克里格方法阐明了研究区重金属元素的空间分布,使用主成分分析-多元线性回归(PCA-MLR)模型进行土壤重金属源解析,并量化其贡献率. 内梅罗综合污染指数法评价结果表明,本研究区中90.79%的土壤点位为重度污染,土壤整体处于重度污染水平. 指示克里格插值结果显示,元素Cd、As、Pb污染的高概率区域主要分布在研究区西部与西南部,Cd、Pb污染的高概率区域主要分布在研究区北部,而Cd、As、Pb污染的低概率区域主要分布在研究区东部及东南部. PCA-MLR模型解析重金属污染来源包括:研究区整体自然源贡献率为12.79%,工业源贡献率为87.21%;东岸自然源、工业源贡献率分别为92.46%、7.54%,西岸自然源、工业源贡献率分别为8.98%、91.02%. 研究显示,金子河流域西岸区域的重金属污染风险明显高于东岸区域,分区域进行源解析可以有效揭示局部污染特性,更为准确地识别污染来源.   相似文献   

9.
工业化正在加剧我国的土壤重金属污染.湖南省汝城县矿产资源丰富,工矿企业密集,粗放的矿业生产给当地土壤环境带来了一系列问题,准确掌握其污染来源是土壤污染防治的关键和前提.采集汝城县233个土壤样本,对重金属含量进行模型分析后选择拟合效果较好的Cd、Hg、As、Pb、Cr、Cu、Ni七种重金属为研究对象,测定其含量,使用UNMIX模型解析其污染来源,并结合空间插值与莫兰指数方法,从空间关系的角度验证模型并补充说明研究区土壤重金属的来源.结果表明:①研究区土壤中Cd、Hg、As、Pb、Cr、Cu、Ni含量的平均值分别为0.29、0.18、19.91、44.17、66.31、28.67、25.16 mg/kg,除Cr、Ni外,Cd、Hg、As、Pb、Cu含量的平均值均高于当地背景值.除Hg外的其他6种重金属存在含量超出GB 15618-2018《土壤环境质量农用地土壤污染风险管控标准(试行)》筛选值的情况.②研究区土壤中7种重金属的含量主要受到自然源、大气沉降与工业直接排放混合源、污水源和工业直接排放源的影响,贡献率分别为41.87%、33.10%、13.27%和11.76%.其中,自然源对Cr和Ni的贡献率较大,大气沉降与工业直接排放主要影响Cd和Pb,污水源和工业直接排放源分别对Hg和As的贡献最大.③UNMIX模型与空间分析方法的结合,一方面验证了受体模型的解析结果,同时也对土壤重金属的来源起到了补充说明的作用.研究显示,汝城县土壤重金属含量与工业活动关系密切,工业排放除直接对附近土壤造成污染外,通过大气沉降、河流输送对远距离土壤环境的影响也尤为突出.   相似文献   

10.
为探究重庆某赤泥堆场周边耕地土壤重金属污染特征和来源,分析土壤中8种重金属元素(Cd、Cr、Hg、Ni、Pb、As、Cu和Zn)含量和空间分布特征,利用单因子污染指数法和内梅罗综合污染指数法对土壤重金属污染特征进行评价,并在相关性分析的基础上采用APCS-MLR和PMF模型定量解析重金属来源.结果表明,除土壤Cr外,其他7种重金属元素含量均值均高于重庆市土壤背景值.土壤重金属整体处于中度污染水平,其中Cd、Hg和As为中度污染,Pb、Cu、Ni和Zn为轻度污染.土壤Cr、Ni、Pb、Cu和Zn空间分布格局相似,相互间呈极显著正相关(P < 0.01);Cd、Hg和As空间分布特征有较大差异,且相互间相关性不显著(P > 0.05).源解析表明,研究区土壤重金属来源较为复杂,APCS-MLR和PMF模型均能解析出4种相同的污染源,分别为赤泥堆场渗滤排放和自然来源、火力发电排放源、农业活动与自然来源和有色金属冶炼排放源.两种模型源解析结果差异较小,APCS-MLR模型中4种污染源贡献率分别为51.8%、18.0%、15.9%和14.3%,而在PMF模型中分别为45.9%、12.8%、21.5%和19.8%.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

20.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号