首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以SiO2为载体,采用浸渍法负载MnO2和CeO2制备Ce-Mn/SiO2臭氧催化剂,以塔里木油田钻井 废水COD去除率为评价指标,考察催化剂的制备工艺条件(焙烧温度、焙烧时间、MnO2负载量、CeO2负载量)。 结果表明:在焙烧温度为480℃,焙烧时间为4h,MnO2负载量为15%、CeO2负载量为13.22%( n( Ce)与 n(Mn)之比为3:7)的条件下制备的Ce-Mn/SiO2臭氧催化剂对COD的去除率达到78.20%,5次重复使用后COD去除率仍在72%以上,具有一定的稳定性。通过表征发现,Ce-Mn/SiO2臭氧催化剂载体SiO2以α -石英晶 相的形式存在,MnO2和CeO2成功地负载到SiO2表面,并均匀分布在载体表面。  相似文献   

2.
采用混凝沉淀一厌氧水解酸化一催化铁内电解(即Cu/Fe体系)一好氧组合工艺处理焦化废水,研究了催化铁内电解法用于焦化废水的预处理时,对焦化废水的COD、色度、总磷的去除率。结果表明,催化铁用于焦化废水的预处理,可以提高废水的可生化性,使好氧处理的COD去除率提高,达到80%-90%;催化铁对焦化废水有较好的脱色效果,色度去除率为77.7%-89.3%;催化铁能够去除部分总磷,但是由于微生物生长需要,需在厌氧段补充磷。试验证明,催化铁内电解法是一种有效的焦化废水预处理工艺。  相似文献   

3.
姚淑心 《四川环境》1995,14(2):57-59
本文报道了三氯化铁及聚氯化铁溶液的吸收光度,以及三氯化铁转化为聚铁化合物过程中吸光度的变化规律,建立了吸光度与实测盐基度及理论盐基度的相关方程,并考察了三氯化铁聚合过程中体系摩尔吸光系数的变化,提出根据摩尔吸光系数可以判断聚铁化合物的形态。  相似文献   

4.
申明金 《四川环境》2007,26(5):12-15
为建立能同时测定工业废水中铁、镍、铜含量的化学方法,本文提出铁、镍、铜与5-Br-PADAP及OP在pH 3.5缓冲液中生成稳定的配位化合物,在一定的波长范围内进行同时测定。将系统聚类方法应用于此测定体系的计算,使光谱重叠及光度分析计算中的校正模型的优化问题得到有效的解决。通过最佳化确定了Elman神经网络的结构和参数,将Elman神经网络应用于模拟废水以及实际废水中Fe(Ⅲ)、Ni(Ⅱ)、Cu(Ⅱ)的测定,回收率分别在97%~102.8%和97.4%~102.6%之间,结果满意。  相似文献   

5.
中试试验对比PAC和PAFC处理低温饮用水的混凝性能   总被引:1,自引:0,他引:1  
李艳丽  皮新华  江霜英 《四川环境》2007,26(2):11-13,22
低温降低了混凝剂的混凝性能,为保持传统混凝沉淀工艺中低温条件下饮用水的出水水质,需要优选混凝性能更好的混凝剂。本试验选用了小试试验中性能更优的无机高分子复合混凝剂PAFC(聚合氯化铝铁)与无机高分子混凝剂PAC(聚合氯化铝)进行中试对比试验。试验结果表明铁铝复合混凝剂PAFC在低温条件下的混凝性能要优于铝盐PAC。使用PAFC时混凝澄清池的出水浊度能保持在3NTU以内,在0.55~2.87NTU之间变化。而使用PAC的出水浊度在1.44~3.87NTU之间。比较其他出水指标如色度、氨氮、pH、电导率、铁和CODM。后发现,当PAFC比PAC平均节省药剂12.3%时,PAFC的处理效果仍旧比PAC好。  相似文献   

6.
为了掌握南充市近年来城市空气质量变化及其达标情况,对南充市城区2008~2012年SO2、NO2和PM10的质量浓度数据进行统计分析,并计算各个站点的空气污染指数和空气质量指数。结果表明,3种污染物浓度值都有明显的下降趋势,S02浓度在0.002~0.052mg/m^3之间变化;N02浓度值从0.042mg/m^3下降到0.029mg/m^3;PM10浓度在0.060~0.063mg/m^3之间波动。南充市空气质量冬季较差,夏季较好。在5个监测点中,炼油厂空气质量最差,优良率为92.9%(85.1%);高坪空气质量最好,优良率为99.1%(98.3%)。相关性分析表明,南充市空气污染源主要是工业燃煤和机动车尾气。  相似文献   

7.
用示波极谱法对酚类化合物进行分析,方法的线性范围在3.0×10 ̄(-5)~8.0×10 ̄(-3)mg/L之间,最低检出限为6.0×10 ̄(-6)mg/L,浓度为0.26×10 ̄(-2)~0.52mg/L时的相对标准偏差为1.8%~4.0%,浓度为0.3×10 ̄(-2)~0.51mg/L时的回收率为95.0%~102.1%,其结果与4-氨基胺替比林分光光度法相一致。  相似文献   

8.
UPLC-DAD-FLD测定土壤中多环芳烃   总被引:1,自引:0,他引:1  
本文建立了以加速溶剂萃取(ASE)和固相萃取为提取和净化手段,采用超速液相色谱-二极管阵列-荧光检测器(UPLC-DAD-FLD)串联捡测土壤中16种多环芳烃的方法。通过色谱柱的比较,选择更小粒径和内径的分析柱(Supelco SILTMLC.PAH,100×3.0mm,3μm),缩短了分析时间,也节省了溶剂(乙腈),满足大量样品的快速灵敏分析的需要。在保留时间定性的基础上,利用PDA获取的紫外扫描光谱图与目标化合物的特征吸收标准谱图比较,提高了定性分析的准确性。在优化的实验条件下,该方法显示出良好的线性关系(r〉0.999)和精密度(RSD〈10%),16种多环芳烃的检出限在0.005—1.33μg/kg之间,并成功应用于样品分析,样品加标回收率为71.4%~120%。实验中为了确保整个分析过程的可靠性,替代物的加标回收率控制在50%-150%之间;土壤标准参考物的测定结果都在预测值范围内,验证了该方法的准确性。  相似文献   

9.
研究了攀西地区铬污染土壤和正常土壤铬含量分布及其石榴样品铬污染情况。结果表明攀枝花大田石榴基地土壤铬含量在23.1—504mg/kg,平均值高达184mg/kg,超标率为26%,而对该基地的石榴果实进行两年连续监测结果表明,铬含量在0.0012—0.067mg/kg之间,平均为0.016mg/kg,大大低于相应产品标准(0.5mg/kg),超标率为0%;会理石榴基地土壤铬含量在34.5—99.1mg/kg,平均值为69.0mg/kg,超标率为0%,该基地的石榴果实铬含量在0.0075—0.104mg/kg之间,平均为0.024mg/kg,大大低于相应产品标准(0.5mg/kg),超标率为0%。形态分析表明土壤中铬99%以上都是以不被植物利用的残渣态存在,因此土壤总铬再高,其被植物可吸收部分却很少,这就导致了受铬污染的土壤却不一定能生产出污染石榴的原因。  相似文献   

10.
以淮南市平山头水厂水源4种邻苯二甲酸酯类(PAEs):邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP)为研究对象,研究了水源地水中PAEs的污染情况。研究结果表明:DMP、DEP、BBP、DBP的检出率分别为50%、83.3%、83.3%、100%,DBP的达标率为100%;DMP、DEP、BBP、DBP对∑4PAEs污染的贡献率依次为:5.2%、3.7%、20.1%、71.1%,说明平山头水厂水源地水中PAEs污染主要以DBP为主。水源地各采样点∑4PAEs的含量范围0.632~1.623μg/L,其采样断面平均浓度顺序为:上游〉中游〉下游。  相似文献   

11.
This research investigated the performance of lime-BHA (black rice husk ash) solidified plating sludge with 2 wt% NaO from Na(2)SiO(3) and Na(2)CO(3) at the level of 0, 30 and 50 wt%. The sludge was evaluated for strength development, leachability, solution chemistry and microstructure. The lime-BHA solidified plating sludge with Na(2)SiO(3) and Na(2)CO(3) had higher early strength when compared to the control. The addition of Na(2)SiO(3) and Na(2)CO(3) increased the OH(-) concentration and decreased the Ca(2+) and heavy metal ions in solution after the first minute. The XRD patterns showed that the addition of Na(2)SiO(3) resulted in the formation of calcium silicate hydrates, while the addition of Na(2)CO(3) resulted in CaCO(3). The heavy metals from the plating sludge, especially Zn, were immobilized in calcium zincate and calcium zinc silicate forms for the lime-BHA with and without Na(2)SiO(3) solidified wastes, while samples with Na(2)CO(3) contained Zn that was fixed in the form of CaZnCO(3). The cumulative leaching of Fe, Cr and Zn from the lime-BHA solidified plating sludge decreased significantly when activators were added, especially Na(2)CO(3).  相似文献   

12.
Information is needed on organic polyphosphates such as myo-inositol 1,2,3,5/4,6-hexakis dihydrogenphosphate or phytate (IP6) contribution to the sources and sinks of dissolved phosphorus (PO4-P) in the soil-manure-water system. Effects of Na+, Ca2+, Al3+, and Fe3+ and cation to IP6-P mole ratios on the enzymatic dephosphorylation of IP6 were studied to determine controlling mechanisms of dephosphorylation and persistence in manure. Phytate- and PO4-P were analyzed by high-performance liquid chromatography. Phytate dephosphorylation by Aspergillus ficuum (Reichardt) Henn. phytase EC 3.1.3.8 decreases by 50 +/- 3.6 and 40 +/- 4% at pH 4.5 and 6, respectively, as Ca2+ concentrations increase and cation to IP6-P mole ratios reach 6:6. Polyanionic IP6 has a high affinity for Al3+ and Fe3+ and reductions in dephosphorylation average 27 and 32% at a cation to IP6-P mole ratio of 1:6 for Al3+ and Fe3+, respectively, while reaching more than 99% at a mole ratio of 6:6. A phytase-hydrolyzable phosphorus (PHP) fraction is native to ruminant animal manure and is proportional to total solids (TS) concentration in 1 to 100 g L(-1) suspensions. Added phytase, in effect, increases water-extractable P content of manure and the risk of environmental P dispersion. As the bioavailability and ecological effect of IP6-P appear to be regulated not only by pH-controlled enzyme activity but also by the associated counterions, the differential protective effects of cations influence the accuracy of manure PHP fraction estimates and increase phytate resistance to enzymatic dephosphorylation that may lead to its persistence in manure.  相似文献   

13.
Permeable zerovalent iron (Fe0) barriers have become an established technology for remediating contaminated ground water. This same technology may be applicable for treating pesticides amenable to dehalogenation as they move downward in the vadose zone. By conducting miscible displacement experiments in the laboratory with metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; a chloroacetanilide herbicide] under unsaturated flow, we provide proof-of-concept for such an approach. Transport experiments were conducted in repacked, unsaturated soil columns attached to vacuum chambers and run under constant matrix potential (-30 kPa) and Darcy flux (approximately 2 cm d(-1)). Treatments included soil columns equipped with and without a permeable reactive barrier (PRB) consisting of a Fe0-sand (50:50) mixture supplemented with Al2(SO4)3. A continuous pulse of 14C-labeled metolachlor (1.45 mM) and tritiated water (3H2O) was applied to top of the columns for 10 d. Results indicated complete (100%) metolachlor destruction, with the dehalogenated product observed as the primary degradate in the leachate. Similar results were obtained with a 25:75 Fe0-sand barrier but metolachlor destruction was not as efficient when unannealed iron was used or Al2(SO4)3 was omitted from the barrier. A second set of transport experiments used metolachlor-contaminated soil in lieu of a 14C-metolachlor pulse. Under these conditions, the iron barrier decreased metolachlor concentration in the leachate by approximately 50%. These results provide initial evidence that permeable iron barriers can effectively reduce metolachlor leaching under unsaturated flow.  相似文献   

14.
废高磁合金钢中钴、镍的分离和利用   总被引:1,自引:0,他引:1  
岳松 《四川环境》2000,19(4):29-31
用硫酸、盐酸和硝酸溶解废高磁合金钢、并将Fe^2 氧化为Fe^3 。先用黄铁矾法除去大部分铁,用尿素除去少量的铁及铝、钛、铜;最后在NH3-NH4Cl体系中分离钴、镍,并制成相应的盐。钴、镍的回收率分别国81.5%、89.7%。  相似文献   

15.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

16.
Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B). Laboratory tests indicated that Soil A was highly alkaline and needed to be acidified [with H2SO4, Al2(SO4)3, or CH3COOH] before Fe(0) could transform RDX. Pilot-scale experiments were performed by mixing Fe(0) and contaminated soil (70 kg), and acidifying amendments with a high-speed mixer that was a one-sixth replica of a field-scale unit. Soils were kept unsaturated (soil water content = 0.30-0.34 kg kg(-1)) and sampled with time (0-120 d). While adding CH3COOH improved the effectiveness of Fe(0) to remove RDX in Soil A (98% destruction), CH3COOH had a negative effect in Soil B. We believe that this difference is a result of high concentrations of organic matter and Ba. Adding CH3COOH to Soil B lowered pH and facilitated Ba release from BaSO4 or BaCO3, which decreased Fe(0) performance by promoting flocculation of humic material on the iron. Despite problems encountered with CH3COOH, pilot-scale treatment of Soil B (12 100 mg RDX kg(-1)) with Fe(0) or Fe(0) + Al2(SO4)3 showed high RDX destruction (96-98%). This indicates that RDX-contaminated soil can be remediated at the field scale with Fe(0) and soil-specific problems (i.e., alkalinity, high organic matter or Ba) can be overcome by adjustments to the Fe(0) treatment.  相似文献   

17.
Pesticide spills are common occurrences at agricultural cooperatives and farmsteads. When inadvertent spills occur, chemicals normally beneficial can become point sources of ground and surface water contamination. We report results from a field trial where approximately 765 m3 of soil from a metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] spill site was treated with zerovalent iron (Fe0). Preliminary laboratory experiments confirmed metolachlor dechlorination by Fe0 in aqueous solution and that this process could be accelerated by adding appropriate proportions of Al2(SO4)3 or acetic acid (CH3COOH). The field project was initiated by moving the stockpiled, contaminated soil into windrows using common earth-moving equipment. The soil was then mixed with water (0.35-0.40 kg H2O kg(-1)) and various combinations of 5% Fe0 (w/w),2% Al2(SO4)3 (w/w), and 0.5% acetic acid (v/w). Windrows were covered with clear plastic and incubated without additional mixing for 90 d. Approximately every 14 d, the plastic sheeting was removed for soil sampling and the surface of the windrows rewetted. Metolachlor concentrations were significantly reduced and varied among treatments. The addition of Fe0 alone decreased metolachlor concentration from 1789 to 504 mg kg(-1) within 90 d, whereas adding Fe0 with Al2(SO4)3 and CH3COOH decreased the concentration from 1402 to 13 mg kg(-1). These results provide evidence that zerovalent iron can be used for on-site, field-scale treatment of pesticide-contaminated soil.  相似文献   

18.
Under anoxic conditions, zerovalent iron (Fe(0)) reduces nitrate to ammonium and magnetite (Fe3O4) is produced at near-neutral pH. Nitrate removal was most rapid at low pH (2-4); however, the formation of a black oxide film at pH 5 to 8 temporarily halted or slowed the reaction unless the system was augmented with Fe(2+), Cu(2+), or Al(3+). Bathing the corroding Fe(0) in a Fe(2+) solution greatly enhanced nitrate reduction at near-neutral pH and coincided with the formation of a black precipitate. X-ray diffractometry and scanning electron microscopy confirmed that both the black precipitate and black oxide coating on the iron surface were magnetite. In this system, ferrous iron was determined to be a partial contributor to nitrate removal, but nitrate reduction was not observed in the absence of Fe(0). Nitrate removal was also enhanced by augmenting the Fe(0)-H2O system with Fe(3+), Cu(2+), or Al(3+) but not Ca(2+), Mg(2+), or Zn(2+). Our research indicates that a magnetite coating is not a hindrance to nitrate reduction by Fe(0), provided sufficient aqueous Fe(2+) is present in the system.  相似文献   

19.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

20.
Nitrate reduction in the presence of wüstite   总被引:1,自引:0,他引:1  
Recent strategies to reduce elevated nitrate concentrations employ metallic Fe0 as a reductant. Secondary products of Fe0 corrosion include magnetite (Fe3O4), green rust [Fe6(OH)12SO4], and wüstite [FeO(s)]. To our knowledge, no studies have been reported on the reactivity of NO3- with FeO(s). This project was initiated to evaluate the reactivity of FeO(s) with NO3- under abiotic conditions. Stirred batch reactions were performed in an anaerobic chamber over a range of pH values (5.45, 6.45, and 7.45), initial FeO(s) concentrations (1, 5, and 10 g L(-1)), initial NO3- concentrations (1, 10, and 15 mM), and temperatures (3, 21, 31, and 41 degrees C) for kinetic and thermodynamic determinations. Suspensions were periodically removed and filtered to measure dissolved nitrogen and iron species. Solid phases were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Nitrate reduction by FeO was rapid and characterized by nearly stoichiometric conversion of NO3- to NH4+. Transient NO2- formation also occurred. The XRD and SEM results indicated the formation of Fe3O4 as a reaction product of the heterogeneous redox reaction. Kinetics of NO3- reduction suggested a rate equation of the type: -d[NO3-]/dt = k[FeO]0.57[H]0.22[NO3-]1.12 where k = 3.46 x 10(-3) +/- 0.38 x 10(-3) M(-1) s(-1), at 25 degrees C. Arrhenius and Eyring plots indicate that the reaction is surface chemical-controlled and proceeds by an associative mechanism involving a step where both NO3- and FeO(s) bind together in an intermediate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号