首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A two-dimensional numerical model for simulating airflow and pollutant dispersion inside an urban street canyon was first developed using the FLUENT code, and then it was validated against a wind tunnel experiment. Then the effects of strength and position of pollutant sources on pollutant dispersion within an urban street canyon were investigated numerically. The numerical results showed that the dimensionless pollutant concentrations within the urban street canyon were independent from the source strength. The results also revealed that the pollutant distributions inside the urban street canyon with a two-lane road were influenced significantly by the positions of the two sources: 1) the closer the two sources were to the street center of the canyon, the lower the pollutant concentrations on the leeward wall and at the human respiration level in the leeward footpath became; 2) the pollutant concentrations on the windward wall and at the human respiration level in the windward footpath were not sensitive to the locations of the two sources as long as the source on the windward lane was situated outside the small recirculation zone at the bottom corner of the canyon windward wall; 3) the pollutant concentrations on the lower parts of the windward and leeward walls as well as in the two footpaths increased greatly when the two sources were moved from outside into the small recirculation zones.  相似文献   

2.
ABSTRACT

The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.  相似文献   

3.
For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.  相似文献   

4.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

5.
The objective of this study is to investigate the air ventilation impacts of the so called “wall effect” caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD – FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio (VR) and the retention time (Tr) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a “wall” upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.  相似文献   

6.
Recent observations of air pollutant concentrations measured within and above street canyons were used to study the average vertical profiles of vehicular pollutant concentrations in the urban environment. The idea of an exponential vertical concentration distribution, exp( −Bzq), resulted from a near ground-level source diffusing over flat terrain, was tentatively extended to the urban street canyons, where the empirical parameters B and q are generally dependent on the atmospheric stability and the aerodynamic characteristics of the canyon.  相似文献   

7.
Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of “visibility”, was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons.  相似文献   

8.
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.  相似文献   

9.
Flow field and concentration measurements have been performed in an idealized model of an urban street canyon with one row of trees arranged along the center axis. The model was set up in an atmospheric boundary layer wind tunnel and the approach flow was directed perpendicular to the street axis. A line source embedded in the bottom of the street was used to release tracer gas for the simulation of traffic exhaust emissions. Trees with spherical crowns were modeled and positioned inside the street canyon, varying crown diameter, crown permeability, trunk height and tree spacing. Traffic-induced turbulence was simulated by rotating belts with thin plates. Concentrations were measured at the facades of the street canyon. For small tree crowns, only little changes in concentration were measured, however, increasing crown diameters led to increasing concentrations at the leeward street canyon wall associated with a reduction of local concentrations at the windward wall. For some cases, a variation of trunk height led to a modification of the concentration pattern on the walls. Increasing the tree spacing resulted in a noticeable concentration decrease. When compared to the situation with standing (but emitting) traffic, the traffic-induced turbulence by two-way car movements always contributed to a more homogenous concentration field inside the street canyon yielding to reduced mean concentration levels.  相似文献   

10.
The ventilation and pollutant transport in a two-dimensional (2D) street canyon of building-height-to-street-width (aspect) ratio h/b = 1 under different unstable stratifications were examined. To characterize the combined wind-buoyancy-driven flow and pollutant transport at different Richardson number Ri, a computational fluid dynamics (CFD) model based on the Reynolds-averaged Navier–Stokes (RANS) equations with the Renormalization Group (RNG) k ? ε turbulence model was adopted. Unlike the isothermal condition, a secondary recirculation is initiated at the ground-level windward corner of the street canyon once the unstable stratification is switched on (Ri < 0). It traps the ground-level pollutant leading to elevated pollutant concentration there. As Ri further decreases, the enlarging secondary recirculation enables direct pollutant removal from its core to the shear layer that offsets the ground-level pollutant accumulation. The ventilation and pollutant removal performance under different unstable stratifications are compared by the air (ACH) and pollutant (PCH) exchange rates, and pollutant retention time (τ). Both the mean and turbulent components of ACH are found to increase with decreasing Ri, suggesting that unstable stratification promotes ventilation in street canyons. Moreover, the CFD results agree well with our theoretical model that ACH2 varies linearly with Ri. Turbulent transport originally dominates the pollutant removal under isothermal condition. However, progressive domination of pollutant removal by mean wind can be observed with decreasing stability (decreasing Ri from 0 to ?10.6). The critical value is estimated to be Ri = ?8, below which mean wind is the major pollutant removal carrier. Reduction in τ is also observed with decreasing Ri. Hence, in unstable stratification, pollutant resides shorter time in the street canyon compared with its isothermal counterpart, and the ventilation and pollutant removal are more favorable.  相似文献   

11.
Street canyon ventilation and atmospheric turbulence   总被引:4,自引:0,他引:4  
Operational models for pollutant dispersion in urban areas require an estimate of the turbulent transfer between the street canyons and the overlying atmospheric flow. To date, the mechanisms that govern this process remain poorly understood. We have studied the mass exchange between a street canyon and the atmospheric flow above it by means of wind tunnel experiments. Fluid velocities were measured with a Particle Image Velocimetry system and passive scalar concentrations were measured using a Flame Ionisation Detector. The mass-transfer velocity between the canyon and the external flow has been estimated by measuring the cavity wash-out time. A two-box model, used to estimate the transfer velocity for varying dynamical conditions of the external flow, has been used to interpret the experimental data. This study sheds new light on the mechanisms which drive the ventilation of a street canyon and illustrates the influence of the external turbulence on the transfer process.  相似文献   

12.
The dispersion model, ADMS-Urban, alongside the statistical modelling technique, generalized additive modelling, have been used to predict hourly NOx and nitrogen dioxide (NO2) concentrations at a busy street canyon location and the results compared with measurements. Generalized additive models (GAMs) were constructed for NO2 and NOx concentrations using input data required to run ADMS-Urban. Bivariate polar plots have been produced from the wind flow (speed and direction) and pollution data (measured and predicted concentrations) to provide further information regarding the complex wind-pollutant interactions in an urban street canyon. The predictions made with the GAMs show excellent agreement with measured concentrations at this location, reproducing both the magnitude of NOx and NO2 concentrations and also the wind speed-wind direction dependence of pollutant sources within the canyon. However, the predictions made with ADMS-Urban under-estimated the measured NOx by 11% and NO2 by 21% and there are clear differences in the bivariate polar plots. Several sensitivity tests were carried out with ADMS-Urban in an attempt to produce predictions in closer agreement to those measured at Gillygate. Increasing the primary NO2 fraction in ADMS-Urban (from 10% to 20%) had a considerable effect on the predictions made with this model, increasing NO2 predictions by ∼20%. However, the bivariate plots still showed major differences to those of the measurements. This work illustrates that generalized additive modelling is a useful tool for investigating complex wind-pollutant interactions within a street canyon.  相似文献   

13.
A two-dimensional numerical model for evaluating the wind flow and pollutant dispersion within a street canyon was first developed using the FLUENT code, which was then validated against a wind tunnel experiment. Then, the effects of the upstream building width and upwind building arrangement on the airflow and pollutant dispersion inside an isolated street canyon were investigated numerically. The numerical results revealed that: (1) the in-canyon vortex center shifts downwards as the upstream building width increases; (2) the recirculation zone covers the entire upstream building roof for the cases when W/H = 0.5, 1.0, 1.5, and 2.0 (W is the upstream building width and H is the building height), whereas the flow reattaches the upstream building roof for the cases when W/H = 2.5 and 3.0; (3) when the upstream building width is shorter than the critical width WC (= 2H), an increase in the upstream building width leads to an increase in the pollution level on the leeward wall of the canyon and a decrease in the roof-level concentrations at the upstream building; (4) when the upstream building width is longer than the critical width, the roof-level concentrations at the upstream building are negligibly small and the pollution level on the leeward wall of the canyon is almost unaffected by a further increase in the upstream building width; (5) when the buildings are placed upwind of the canyon, the flow attaches the upstream building roof and, therefore, almost none of the pollutants are distributed on the upstream building roof; and (6) the pollution levels inside the canyon and on the downstream building roof increase significantly with the number of upwind buildings.  相似文献   

14.
NOx and NO2 concentrations were measured at different locations in a city centre of an urban zone (Population 450 000) in order to study the variation of the outdoor exposure at pedestrian level. These measurements were carried out to understand the influence of traffic emissions at each measured site. The observations were done during four weeks in winter, including several days with high pollution levels. The results at different locations have been used to analyse criteria recommended for locating observation sites in a monitoring network. No large differences in background pollution averaged over several weeks have been found throughout the city centre, even during pollution peaks. Measurements were also carried out inside one street canyon. The contribution of the street traffic to the NO=NOx−NO2 concentrations observed at side-walk has been found important, i.e., several times the background level. On the other hand, the majority of observed NO2 pollution is due to the contribution of background pollution within the street. The pollutant excess at pedestrian level is strongly correlated to the street traffic emission and to the atmospheric turbulence observed at roof level. Application of a box model to the street data demonstrates that such models can be useful to estimate the pollutant accumulation within the street.  相似文献   

15.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

16.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

17.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

18.
This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.  相似文献   

19.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.  相似文献   

20.
Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号