首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The aim of this study was to determine the total metal accumulation (aluminium, copper, manganese, lead, cadmium and iron) in different organs and eggs of Astacus leptodactylus (Eschscholtz, 1823) and sediments total metal contents (aluminium, copper, manganese, lead, cadmium, iron, zinc, chromium, nickel) in Lake Terkos. Water and sediment samples were collected from two stations at two different depths (1 and 2 m) of Lake Terkos in May 2008. Crayfish samples were collected by trammel net at the same region. Primary hydrographic conditions, such as temperature (13.6–19.4°C), salinity (0.27–0.34‰), dissolved oxygen (7.04–12.30 mg l???1) and pH (7.42–8.51), were recorded for each sampling point. Moreover, the total organic carbon (1.65–5.44%) and the total calcium carbonate contents (19.44–41.16%) of sediment samples were determined. According to the Turkish Food Codex (J Zool 26:283–288, 2002), the maximum allowable Pb and Cd levels in crayfish are 0.5 mg/kg wet weight. Accordingly, the Pb and Cd levels determined in A. leptodactylus samples are below this limit. However, when compared with the acceptable metal limits defined by WHO, Australian National Health and Medical Research Council and Ministry of Agriculture in United Kingdom (UK), it is clear that the Cu level is at the limit and the Cd results exceed the limit. When the metal contents in sediment samples from Lake Terkos are examined, it is seen that the Al, Fe, Mn, Ni and Cu contents are lower while Zn, Cr, Cd and Pb contents are higher than the crustal average values. The high values draw attention to the land-based domestic and industrial inputs. Lake Terkos sediments have high enrichment factors (EF) of Zn, Cr, Cd and Pb metals which corroborate this result. The low EFs of Fe, Ni and Cu are due to the natural (terrigeneous) inputs. Additionally, there is no Al, Fe, Ni and Cu metal enrichment in these lake sediments because of the low contamination factor (CF) values. However, it is moderately contaminated by Zn, Cr and Pb, and heavily contaminated by Cd.  相似文献   

2.
Accumulation dynamics and cellular locations of lead (Pb), zinc (Zn) and cadmium (Cd) were studied in Flavocetraria nivalis lichens near the former Black Angel Pb–Zn Mine in West Greenland. Natural resident thalli were collected from four dust-contaminated sites near the mine. In addition, thalli were taken from an uncontaminated reference site and transplanted to the contaminated sites followed by a collection 1 year after. Total thalli metal contents were determined, and thalli were subjected to a sequential extraction procedure. After 1 year of transplantation, total Pb thalli contents were significantly elevated compared with initial concentrations at all sites (for Zn and Cd contents only at the two sites closest to the mine). However, transplanted thalli contained significantly less Pb (26?±?12 %), Zn (64?±?13 %) and Cd (34?±?7 %) compared with resident thalli from these sites. Results from the sequential extraction procedure showed marked differences among Pb, Zn and Cd in the extracellular, intracellular and residual fraction. The lower total metal concentrations in transplanted compared with resident thalli at the contaminated sites were mostly due to a larger metal content bound in the residual fraction in resident thalli. In contrast, the metal content bound in the extracellular fraction were not significantly different in transplanted and resident thalli. The results indicate that extracellular-bound Pb, Zn and Cd in F. nivalis can be used as a proxy for recent (annual) atmospheric metal deposition whereas the large residual metal fraction in resident lichens indicate an accumulation of metal-containing particles in the thalli over time that includes several years of uptake.  相似文献   

3.
Enhancement of multiple heavy metal uptake from municipal solid waste (MSW) compost by Lolium perenne L. in a field experiment was investigated with application of EDTA. EDTA was added in solution at six rates (0–30 mmol kg???1) after 50 days of plant growth. Two weeks later, plants were harvested for the first crop and then all the turfgrasses were mowed. After another 30 days of growth, EDTA was added again at above six rates to the corresponding sites and the second crop was harvested 2 weeks later. The results showed that EDTA significantly increased heavy metal accumulation in both crops of L. perenne. For the first crop, the concentrations of Mn, Ni, Cd, and Pb in the shoots increased remarkably with increasing EDTA supply, peaked at 25 mmol kg???1 EDTA, and shoots of 0–5 cm height (shoots from medium surface to 5 cm height) had higher metal concentrations than 5–10 cm and >10 cm shoots. The highest concentration of Mn, Ni, Cd, and Pb was 2.3-, 2.3-, 2.6-, and 3.2-fold, respectively, in 0–5 cm shoots higher than control. For the second crop, the concentrations of Mn, Cu, and Pb in shoots were, in general, less than those in the first crop. However, the second crop was significantly higher (P?< 0.05) than the first crop in dry biomass, so the total amount of metals removed by the second crop was more than the first crop. In addition, EDTA significantly increased the translocation ratios of most heavy metals from roots to shoots. For the first crop, 38% of the total Zn, 51% of Cd, 49% of Pb, 60% Mn, 55% Ni, and 45% Cu taken up by the plant was translocated in the shoots of 0–5 cm height. Turfgrass would have potential for use in remediation of heavy metals in MSW compost or contaminated soils.  相似文献   

4.
In this study, coupled Pb concentration/Pb isotope data were used to evaluate the effect of a shooting range (operational for over 30 years) on Pb contamination of adjacent agricultural soils and the associated environmental risks. Lead was mainly concentrated in the arable layer of the contaminated agricultural soils at total concentrations ranging from 573 to 694 mg kg???1. Isotopic analyses (206Pb/207Pb) proved that Pb originated predominantly from the currently used pellets. Chemical fractionation analyses showed that Pb was mainly associated with the reducible fraction of the contaminated soil, which is in accordance with its predominant soil phases (PbO, PbCO3). The 0.05 M EDTA extraction showed that up to 62% of total Pb from the contaminated site is potentially mobilizable. Furthermore, Pb concentrations obtained from the synthetic precipitation leaching procedure extraction exceeded the regulatory limit set by the United States Environmental Protection Agency for drinking water. Ion exchange resin bags showed to be inefficient for determining the vertical distribution of free Pb2?+? throughout the soil profile. Increased Pb concentrations were found in the biomass of spring barley (Hordeum vulgare L.) sampled at the studied site and two possible pathways of Pb uptake have been identified: (1) through passive diffusion-driven uptake by roots and (2) especially through atmospheric deposition, which was also proved by analyses of a bioindicator species (bryophyte Hypnum cupressiforme Hedw.). This study showed that shooting ranges can present an important source of Pb contamination of agricultural soils located in their close vicinity.  相似文献   

5.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

6.
A microwave-assisted extraction (MAE) method was verified and applied for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples. Soxhlet extraction was used as the reference method. The optimum MAE was carried out with 20 mL of hexane/acetone (1:1, v/v) mixture in a 1-g sample at 250 W for 20 min. Soxhlet extraction was carried out with 250 mL of dichloromethane:hexane (1:1, v/v) mixture in a 15-g sample for 24 h in a water bath maintained at 60 °C. The collected extracts were both cleaned up, reduced to 1 mL under nitrogen and then injected into an HPLC fluorescence. To increase the sample throughput, simultaneous MAE was performed. The obtained percentage recoveries ranged from 61 to 93 and 88–98 for MAE and SE, respectively. The optimised MAE method was validated using certified reference material. It was then applied to real sediment samples from in and around the greater Johannesburg area. The sediments from Jukskei River were found to be the most polluted while Hartbeespoort Dam sediments were found to be least polluted. The overall order of concentrations for the studied PAHs per site was as follows: Jukskei River?>?Kempton Park?>?Centurion Dams?>?Natalspruit River (PIT)?>?Hartbeespoort Dam.  相似文献   

7.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal.  相似文献   

8.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

9.
An exploratory study of the area surrounding a historical Pb?CZn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n?=?87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 ?? g/g, Zn 870.25 ?? g/g, Mn 696.70 ?? g/g, and Cd 2.09 ?? g/g. Zn concentrations were significantly correlated with Cd (r?=?0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n?=?23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of ??total?? metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ?? Pb >?> Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.  相似文献   

10.
A quicklime-sulfate-based stabilization/ solidification (S/S) process for arsenic (As) and lead (Pb) immobilization was evaluated under “semi-dynamic” leaching conditions. In order to simulate aggressive leaching conditions the semi-dynamic leaching tests was modified by using 0.014 N of acetic solution instead of distilled water. Kaolinite-sand and montmorillonite-sand soil samples were artificially contaminated with As and Pb, compacted and cured for 28 days. The semi-dynamic leaching tests were then conducted for 90 days. The effectiveness of the S/S treatment was evaluated by assessing the cumulative release of As and Pb as well as by determining the diffusion coefficients (D eff) and leachability indices (LX). The release of As and Pb was greatly reduced by quicklime-sulfate treatment as compared to untreated samples. Moreover, the quicklime-sulfate treatment was more effective than the quicklime-only treatment in reducing both As and Pb release. The controlling leaching mechanisms were determined using a diffusion theory model. Upon S/S treatment, As and Pb release was diffusion controlled. The LX of all the treated samples were greater than nine, suggesting that S/S treated samples were suitable for “controlled utilization”.  相似文献   

11.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

12.
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.  相似文献   

13.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

14.
The aim of this study was to evaluate the incidence of total aflatoxin (AF), ochratoxin A, T-2 toxin, deoxynivalenol (DON), zearalenone (ZEA), and fumonisin (FB) in dairy cattle, beef cattle, and lamb–calf feeds. A total of 180 dairy cattle, beef cattle, and lamb–calf feeds (60 samples each) were randomly collected from farms, feed mills, and villages in Burdur province, between September 2006 and August 2007. All samples were analyzed by the competitive Enzyme Linked Immuno Sorbent Assay (ELISA). The most frequent mycotoxin detected was total AF, which was found in 108 samples (60 %) in concentrations ranging from 3.82 to 116.83 μg?kg?1, followed by DON that was detected in 87 samples (48.3 %), in concentrations ranging from 18.50 to 500 μg?kg?1. Ochratoxin A (OTA), T-2 toxin, ZEA, and FB were found in 84 (46.7 %), 85 (47.2 %), 57 (31.7 %), and 19 (10.6 %) samples, respectively, in concentrations of 1.01 to 15.85 μg?kg?1 for OTA, 3.85 to 52.36 μg?kg?1 for T-2 toxin, 2.10 to 29.30 μg?kg?1 for ZEA, and 2.69 to 4.96 mg?kg?1 for FB. It was concluded that feed samples in Burdur province were contaminated by mycotoxins, and the levels of total aflatoxin in the samples were considered a risk to animal health.  相似文献   

15.
The physicochemical characteristics of the Buffalo River in the Eastern Cape Province of South Africa were evaluated using standard methods. The assessment was carried out with total of 72 water samples collected from six sites over a 12-month period, from August 2010 to July 2011. Water temperature ranged from 11 to 28 °C, while pH varied from 6.6 to 10.7 and turbidity from 1.7 to 133 NTU. Electrical conductivity, total dissolved solids (TDS) and salinity showed drastic variations (42.3–46,693 μS/cm, 20.3–23,350 mg/l and 0.02–33.8 PSU, respectively) and the significantly (P?<?0.05) higher mean values of these parameters recorded at Parkside reflect the influence of seawater at the Buffalo River estuary. The concentrations of other parameters ranged as follows: chloride (3.7–168 mg/l), DO (6.9–11.1), BOD (0.6–9.4), COD (3.7–45.9), nitrite–nitrogen (0.02–0.21), nitrate–nitrogen (1–4.47) and orthophosphate (0.01–1.72). There was a significant positive correlation between water temperature and DO (r?=?0.200; P?<?0.01). Significant (P?<?0.01) positive correlations also existed between TDS and salinity (r?=?0.921), COD and each of salinity (r?=?0.398), TDS (r?=?0.375) and chloride (r?=?0.330), nitrate and phosphate (r?=?0.323) and BOD and turbidity (r?=?0.290). Significant (p?<?0.01) inverse relationships existed between DO and each of phosphate (r?=??0.295) and nitrate (r?=??0.168). We conclude that the Buffalo River water quality deteriorated in the plains, compared with the upper reaches. Urgent measures are needed to safeguard the river in view of the potential health concerns as many households rely solely on the untreated river water.  相似文献   

16.
Environmental occurrence of CECs poses a great threat to both aquatic life and human health. The aim of this study was to optimize and validate SPE/LC-(ESI)MS-MS method for simultaneous quantitative monitoring of two sub-classes of CECs (pharmaceuticals and hormones) and to estimate the concentrations of select CECs in environmental water samples. For all the tested analytes, recoveries in laboratory reagent water were greater than 81%. Average percent (relative standard deviation) RSD of the analytes in recovery, repeatability, and reproducibility experiments were ≤?10%. Determination coefficients (r2) of primidone, diclofenac, testosterone, and progesterone were estimated to be 0.9979, 0.9972, 0.9968, and 0.9962, respectively. Limits of detection (LOD) for primidone, diclofenac, testosterone, and progesterone were 4.63 ng/L, 5.36 ng/L, 0.55 ng/L, and 0.88 ng/L, respectively. Limits of quantification (LOQ) for primidone, diclofenac, testosterone, and progesterone were 14.72 ng/L, 17.06 ng/L, 1.766 ng/L, and 2.813 ng/L, respectively. Average recoveries in environmental water and wastewater samples were greater than 74% and RSD were ≤?7%. Trace levels (68.33–125.70 ng/L) of primidone were detected in four environmental water samples, whereas diclofenac was not detected in any of the tested sample. Trace levels of progesterone were observed in two environmental samples (16.64 –203.73 ng/L), whereas testosterone was detected in STP inlet sample (178.16 ng/L).  相似文献   

17.
This paper reports high levels and variability in arsenic (As) levels at locations identified as one of the highest As-contaminated locations in Pakistan. Groundwater pollution related to arsenic has been reported since many years in the areas lying in outskirts of District Lahore, Pakistan. A comparative study is done to determine temporal variations of As from three villages, i.e., Kalalanwala (KLW), Manga Mandi (MM), and Shamki Bhattian (SKB). Seventy-three percent of the 30 investigated samples ranging in depth from 20 to 200 m, show an increasing trend in variations of As concentration over a time span of 4 years and 87 % of samples exceeded the WHO standard of 10 μg/L for As while 77 % of samples have As concentration >50 μg/L (national standard). Further results indicate that high levels of As is accompanied with increase pH (r?=?0.8) favoring desorption of As from minerals at higher pH under oxidizing conditions. For health risk assessment of arsenic, the average daily dose, hazard quotient (HQ), and cancer risk were calculated. The residents of the studied areas had toxic risk index in the order of SKB>KLW>MM, with 87 % of samples exceeding the typical toxic risk index 1.00 (ranging from 2.3–48.6) which was 83 % (ranging from 0.3–41) 4 years before. The results of the present study therefore indicate that arsenic concentrations are increasing in the area, which needs an immediate attention to provide alternate sources of water to save people at risk.  相似文献   

18.
This work proposes a procedure for the determination of total selenium content in shellfish after digestion of samples in block using cold finger system and detection using atomic fluorescent spectrometry coupled hydride generation (HG AFS). The optimal conditions for HG such as effect and volume of prereduction KBr 10 % (m/v) (1.0 and 2.0 ml) and concentration of hydrochloric acid (3.0 and 6.0 mol L?1) were evaluated. The best results were obtained using 3 mL of HCl (6 mol L?1) and 1 mL of KBr 10 % (m/v), followed by 30 min of prereduction for the volume of 1 mL of the digested sample. The precision and accuracy were assessed by the analysis of the Certified Reference Material NIST 1566b. Under the optimized conditions, the detection and quantification limits were 6.06 and 21.21 μg kg?1, respectively. The developed method was applied to samples of shellfish (oysters, clams, and mussels) collected at Todos os Santos Bay, Bahia, Brazil. Selenium concentrations ranged from 0.23?±?0.02 to 3.70?±?0.27 mg kg?1 for Mytella guyanensis and Anomalocardia brasiliana, respectively. The developed method proved to be accurate, precise, cheap, fast, and could be used for monitoring Se in shellfish samples.  相似文献   

19.
The prevalence and distribution of soil and water samples contaminated with enteroparasites of humans and animals with zoonotic potential (EHAZP) in Apucaraninha Indigenous Land (AIL), southern Brazil, was evaluated. An environmental survey was conducted to evaluate the presence of parasitic forms in peridomiciliary soil and associated variables. Soil samples were collected from 40/293 domiciles (10 domiciles per season), from November 2010 to June 2011, and evaluated by modified methods of Faust et al. and Lutz. Analyses of water from seven consumption sites were also performed. The overall prevalence of soil samples contaminated by EHAZP was 23.8 %. The most prevalent parasitic forms were cyst of Entamoeba spp. and eggs of Ascaris spp. The highest prevalence of contaminated soil samples was observed in winter (31 %). The probability map obtained with geostatistical analyses showed an average of 47 % soil contamination at a distance of approximately 140 m. The parasitological analysis of water did not detect Giardia spp. or Cryptosporidium spp. and showed that all collection points were within the standards of the Brazilian law. However, the microbiological analysis showed the presence of Escherichia coli in 6/7 sampled points. Despite the low level of contamination by EHAZP in peridomiciliar soil and the absence of pathogenic protozoa in water, the AIL soil and water (due to the presence of fecal coliforms) are potential sources of infection for the population, indicating the need for improvements in sanitation and water treatment, in addition periodic treatment of the population with antiparasitic.  相似文献   

20.
This study reports the feasibility of applying directly suspended liquid-phase microextraction (DSLPME)-gas chromatography detection for the pre-concentration and determination of low levels of eight polychlorinated biphenyls (PCBs) in aqueous samples. The technique requires minimal sample preparation, analysis time and solvent consumption and represents significant advantages over conventional analytical methods. The experimental parameters such as salt content, sample temperature, stirring rate, extraction time, micro-drop volume and breakthrough volume were investigated and found to have significant influences on DSLPME. Under the optimal experimental conditions, the enrichment factor ranged from 578 to 729, and the recovery was above 93 %. Calibration curves possessed good linearity (R 2?>?0.99) over a wide concentration range of 0.1–10.0 μg L?1 with limits of detection ranging from 0.01 to 0.07 μg L?1. The relative standard deviations for 1.0 μg L?1 of PCBs in water by using internal standard were in the range 2–14 % (n?=?3). The proposed simple, accurate and sensitive analytical method was applied successfully to the determination of trace amounts of PCBs in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号