首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析.结果表明,采样期间保定市的PM2.5浓度为18.4—258.0μg·m-3,年均值为(91.5±62.5)μg·m-3;季节规律是冬季(160.6μg·m-3)>秋季(105.3μg·m-3)>春季(57.6μg·m-3)>夏季(53.2μg·m-3).WSIs年均值为49.20μg·m-3,占PM2.5.的63.95%,WSIs的季节规律和PM2.5的一致.二次离子占水溶性离子的77.12%.湿度和温度与SOR和NOR成正相关.春夏两季水溶性离子主要以Na...  相似文献   

2.
为分析钢铁集聚区大气细颗粒物(PM2.5)中碳组分的污染特征,对济南市钢铁集聚区和市区秋季(2020年10月15日至2020年10月24日)、冬季(2020年12月18日至2021年1月7日)和春季(2021年4月23日至5月2日)环境空气中PM2.5进行手工采样,利用热光碳分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的含量.结果表明,钢铁集聚区秋季OC和EC质量浓度范围分别为5.79—12.56μg·m-3和1.34—3.44μg·m-3;冬季OC和EC质量浓度范围分别为3.92—55.54μg·m-3和0.38—11.39μg·m-3;春季OC和EC质量浓度范围分别为2.14—4.70μg·m-3和0.19—1.33μg·m-3,呈现显著的季节变化,表现为冬季>秋季>春季.钢铁集聚区冬季PM2.5中OC和EC占比最高,分别为28.11%和5.3...  相似文献   

3.
为阐明大气污染重点整治和新冠疫情影响下我国华北地区城市春节期间重污染过程PM2.5中水溶性无机离子变化特征及其影响因素,本研究结合气态前体物浓度和气象要素,对天津市2018—2020年连续3年春节假期的2次重污染过程PM2.5中主要水溶性无机离子(WSIIs)浓度进行对比分析.结果表明,2018年和2020年春节假期PM2.5平均浓度(98.32μg·m-3和137.7μg·m-3)显著高于2019年(49.97μg·m-3).PM2.5平均浓度在污染期Ⅱ(2020年为206.5μg·m-3)是污染期Ⅰ(2018年98.32μg·m-3)的2.1倍;2次污染事件中NO2浓度变化不大,而SO2浓度在污染期Ⅱ(14.89μg·m-3)是污染期Ⅰ(30.04μg·m-3)的49.6%.SNA在WSIIs中占比超...  相似文献   

4.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。  相似文献   

5.
碳质气溶胶是大气颗粒物的重要组成部分,具有很强的环境和气候效应,是气溶胶科学研究领域的热点.为探究庐山风景区居民区PM2.5中碳质组分的污染特征及来源,于2019年12月2日—2020年10月31日在庐山风景区居民区进行PM2.5样品采集,并对其碳质组分有机碳(OC)和元素碳(EC)进行分析.结果表明,观测期间庐山风景区居民区PM2.5的平均质量浓度为(46.45±18.64)μg·m-3,其中OC和EC平均质量浓度分别是(4.08±1.61)μg·m-3和(0.23±0.10)μg·m-3,占PM2.5总质量的8.78%和0.50%.且碳质颗粒的污染水平普遍低于城市地区,介于国内其他典型高山背景点之间.采用EC示踪法对PM2.5中的二次有机碳(SOC)进行估算,发现采样期间SOC的平均浓度为(1.51±1.22)μg·m-3,占OC的33.2%,表明SOC是PM2.5...  相似文献   

6.
于2017年冬季12月13—21日在青藏高原东缘理塘地区分昼夜采集PM2.5样品,并用DRI2001A热光碳分析仪测定了有机碳(OC)和元素碳(EC)的质量浓度,研究青藏高原PM2.5中碳组分的化学特征及主要来源,以期为理塘地区制定污染排放政策提供参考。结果表明,2017年冬季青藏高原东缘理塘地区PM2.5平均质量浓度为44.34μg·m?3,OC和EC的质量浓度为12.72μg·m?3和3.85μg·m?3,分别占PM2.5质量浓度的29.61%和8.96%。通过经验公式,计算得到总碳气溶胶(TCA)质量浓度为24.20μg·m?3,占PM2.5的54.84%,说明碳质气溶胶对青藏高原东缘理塘地区PM2.5有着十分重要的贡献。OC和EC在白天和夜间都有较高的相关性(相关系数分别为0.74和0.91),表明OC和EC的来源基本一致,受燃烧源影响较大。其中白天的相关系数低于夜间,说明青藏高原东缘理塘地区白天碳组分来源相对复杂。昼夜浓度对比显示,青藏高原东缘理塘地区PM2.5白天和夜间的质量浓度分别为53.88μg·m?3和33.44μg·m?3,OC和EC浓度白天高于夜间,表明白天人为排放相对较高。冬季观测期间,PM2.5中二次有机碳(SOC)昼夜浓度分别为1.11μg·m?3和3.03μg·m?3,分别占OC质量浓度的7.09%、26.59%,表明青藏高原东缘理塘城区白天碳组分主要为一次源。利用PMF 5.0软件对理塘城区碳组分进行进一步的解析,结果显示燃煤和生物质燃烧的混合源对总碳(TC)的贡献高达47.84%,占比最高;其次是汽车尾气和柴油车尾气源,贡献率分别为28.62%和23.54%。  相似文献   

7.
为探究宝鸡市秋季大气PM2.5中水溶性离子的污染特征及来源,于2019年10月15日至11月14日分别对宝鸡市监测站、文理学院和陈仓区环保局的3个站点进行PM2.5样品采集,通过离子色谱仪得到水溶性离子质量浓度,分析了3个站点水溶性离子在清洁时段和污染时段的变化特征及来源.结果表明,三站点PM2.5的质量浓度陈仓区环保局>文理学院>宝鸡市监测站.清洁时段和污染时段PM2.5平均质量浓度分别为40.0μg·m-3和100.1μg·m-3,水溶性离子平均质量浓度分别为(13.7±7.7)μg·m-3和(57.8±15.0)μg·m-3.污染时段NO3-/SO42-值是清洁时段的1.6—1.8倍.污染越重,SNA(NO3-、SO42-和NH4+)质量浓度越大,占总水溶性离子和P...  相似文献   

8.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   

9.
为了探究成都市PM2.5水溶性无机离子的污染特征与来源贡献,于2018年1月1日—12月31日利用高分辨率的MARGA对PM2.5组分展开在线监测,结合同一点位的气态污染物、气象参数监测数据进行分析.结果表明,水溶性无机离子与PM2.5具有相同的月变化趋势,水溶性无机离子月均浓度为10.35-39.60μg·m-3,在PM2.5中的占比为31%—51%,水溶性无机离子是PM2.5的重要组成部分.NO3-在水溶性无机离子中月均占比以12月最高,8月最低,SO42-刚好与之相反.大气长期处于富氨状态,二次离子主要以(NH42SO4、NH4NO3、NH4Cl的形式存在,SOR在冬季12月与夏季8月分别出现高值0.61与0.5,但NOR只在冬季出...  相似文献   

10.
森林被誉为"地球之肺",在防霾治污方面有其独特不可替代的作用,不同树种沉降PM2.5的功能有很大差别.本文选取代表性城市森林——奥林匹克森林公园为研究对象,设置垂直监测塔观测大气PM2.5的浓度垂直分布,以考察不同季节城市森林对PM2.5中各组分的影响.在冬季、春季和夏季各采集PM2.5样品,分析并计算PM2.5中Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-等典型水溶性无机离子的浓度.结果表明,PM2.5中水溶性无机离子总浓度呈规律性变化特征:冬季((56.90±27.38)μg·m-3)>春季((46.69±12.24)μg·m-3)>夏季((23.16±8.75)μg·m-3).其中SO42-和NO3-浓度和占PM2.5主要水溶性无机离子总浓度的50%以上.3个季节中,除冬季外,在春季和夏季,8种离子有明显的垂直方向上的沉降,夏季的沉降速率高于春季,但是春季由于大气颗粒物浓度高,沉降通量高于夏季.NO3-和SO42-垂直方向的沉降量在所有可溶性无机离子中最高.植被密度、叶面积指数、气象条件等因素对于PM2.5的沉降特征有明显影响.  相似文献   

11.
为了更好地探究我国城市地区大气污染问题,2019年10月15—2020年3月1日在山西省运城市采用四通道大气颗粒物采样仪每23 h进行1次细颗粒物(PM2.5)样品采集,分析了样品中有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、水溶性离子的浓度,并对比分析了甲醇提取液和水提取液的紫外-可见吸光特性.结果显示,采样期间PM2.5质量浓度变化范围为6.21—325μg·m-3,其中有41 d达到《环境空气质量指数(AQI)技术规定(试行)》(HJ 633—2012)规定轻度污染及以上的标准,占总天数的64%,说明运城市冬季污染严重.其中,二次无机水溶性离子和有机质为PM2.5的主要组成成分,分别占PM2.5质量浓度的39.6%、29.7%(优良天),38.9%、30.8%(轻-中度污染),40.4%、29.1%(重度污染),38.9%、26.5%(严重污染). NO3-是含量最高的水溶性离子,并且4个时期NO3  相似文献   

12.
本文旨在分析哈尔滨市两城区(道里区和香坊区)2014年—2019年PM2.5中16种芳香烃质量浓度变化规律,明确芳香烃中主要的污染及来源.将颗粒物中的多环芳香烃收集于滤膜,滤膜用乙醚/正己烷的混合溶剂提取,提取液经过浓缩、净化后,用具有荧光及紫外检测器的高效液相色谱仪分离检测.通过空气污染人群健康检测系统选取与PM2.5监测期相同时期的平均气压、平均温度、平均相对湿度、降水量、日照小时数、平均风速等6种气象因素数据,采用Spearman法分析6种气象因素与16种多环芳香烃的相关性.结果表明,道里区PM2.5平均质量浓度为84.9μg·m-3,香坊区为86.5μg·m-3.两城区的PM2.5与平均气压呈显著正相关,与平均温度、平均相对湿度、降水量、日照小时数呈显著负相关.道里区和香坊区在2014—2019年多环芳香烃平均质量浓度分别为50.7 ng·m-3、59.5 ng·m-3.其贡献值由高到低为芘>荧蒽&...  相似文献   

13.
为研究嘉兴地区嘉善冬季污染时段和清洁时段PM2.5化学组分特征,结合气象数据对2019年1月嘉兴市嘉善县善西超级站在线自动监测PM2.5及化学组分数据、气态污染物(NO2和SO2)进行了分析.结果表明,2019年1月嘉善善西超级站污染时段PM2.5浓度(97.18μg·m-3)为清洁时段(36.77μg·m-3)的2.6倍.污染时段水溶性离子浓度(41.58μg·m-3)较清洁时段(19.82μg·m-3)高21.76μg·m-3,但占比有所降低,含碳组分比例增加.OC;EC比值为3.93,可能受到燃煤及机动车排放的共同影响.低风速及高湿有利于NO2和SO2等气态污染物进行二次转化,污染时段硫转化率和氮转化率均比清洁时段高,分别增高7.93%和54.11%,说明NOx向硝酸盐二次转化较为明显,导致颗粒物浓度升高.聚类分析结果显示67.34%气流来自北方,且相应的气流轨迹上污染物浓度比周边高,说明污染物存在一定的长距离输送.结合风玫瑰图可以看出,污染主要为本地及其周边的输送,污染物的长距离输送在短时会使污染浓度突增.因此,在重点关注本地及周边污染的同时,偏北气流下的污染物区域输送不可忽视.  相似文献   

14.
为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH4)2SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显.  相似文献   

15.
为分析济南市PM2.5中二次组分的时空变化和影响因素,对济南市春季(2019年5月16—25日)、秋季(2019年10月15—24日)和冬季(2019年12月17—2020年1月16日)4个典型点位的PM2.5样品进行连续采样,并测定了PM2.5中水溶性离子、有机碳(OC)和元素碳(EC)的含量。结果表明:物流交通区的二次组分质量浓度最高(56.13μg·m?3),钢铁工业区的二次组分浓度比城市市区高,但是二次组分占比较城市市区低,清洁对照点的浓度和占比最低;济南市4个功能区SO42?和NO3?转化率均高于0.1,除清洁对照点外,城市市区、钢铁工业区和物流交通区的SO42?转化率明显高于NO3?转化率;济南市春季、秋季和冬季的ρ(NO3?)/ρ(SO42?)分别为0.67、2.57和1.98,春季PM2.5浓度以固定源贡献为主,秋季和冬季以移动源贡献为主;运用ISORROPIA热力学模型分析了含水量和pH对二次组分生成的影响,含水量会随着污染增大而增大,酸度和含水量对二次无机组分的转化机理产生影响,酸度会抑制二次无机组分的生成,而含水量会促进二次组分的生成;后向轨迹聚类分析结果表明,占比最高的轨迹(29.2%)来自东北方向的滨州和东营,基于潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)分析PM2.5中二次组分质量浓度的潜在污染源区域,SO42?的主要贡献源区在济南市区北部的济阳区和东北方向的滨州、东营等,NO3?和NH4+的主要贡献源区在济南市区北方向的济阳区、东北方向的章丘区和南方向的莱芜区等。该研究结果可为中国北方城市细颗粒物进一步的治理和防控提供数据支撑和理论依据。  相似文献   

16.
为了解冬季调水期南四湖表层水中温室气体的溶存浓度及其排放通量,采集南四湖各湖区和主要入湖河流的河口区表层水及气体样品,分析了水体的理化指标以及CO2、CH4和N2O的溶存浓度,采用薄边界层扩散模型法估算了水—气界面排放通量,并探讨了影响调水期南四湖温室气体溶存浓度的主要因子.结果表明,调水期南四湖表层水中N2O、CH4和CO2浓度分别为(23.0±6.13) nmol·L-1、(0.15±0.10)μmol·L-1和(52.4±11.4)μmol·L-1,均处于高度过饱和状态,排放通量分别为(0.22±0.18)μmol·m-2·h-1、(3.95±2.73)μmol·m-2·h-1和(658±336)μmol·m-2·h-1;浓度和排放通量多与冬季其他湖泊相当...  相似文献   

17.
基于2020年6—8月济南市石化区、市区和南部山区VOCs以及臭氧和气态污染物等在线监测数据,结合气象因素分析了各典型区夏季VOCs污染特征,并通过计算臭氧生成潜势(OFP)和MCM模型模拟分析了不同区域不同污染等级VOCs对臭氧生成的影响,采用PMF模型对市区夏季VOCs进行了来源解析研究.结果表明,石化区VOCs浓度(158.29μg·m-3)明显高于市区(47.71μg·m-3)和南部山区(24.65μg·m-3),VOCs中均以烷烃占比最大,其次为芳香烃,3个区域VOCs浓度均随污染等级升高而升高;不同污染等级下均为石化区OFP(743.7—1474.9μg·m-3)大于市区(156.9—378.1μg·m-3)和南部山区(113.4—168.7μg·m-3),3个区域均是芳香烃OFP占比最大,其次为烯烃,说明芳香烃和烯烃类VOCs对臭氧生成的贡献最大,其中OFP贡献最大的单体为间/对-二甲苯;MCM模拟结果表明石化区O3净生...  相似文献   

18.
我国近年大气污染治理虽取得一定成效,但冬季采暖期仍是大气重污染频发时期.为探究济南市采暖季不同污染天气PM2.5及其负载组分的污染特征及来源,采集2018年12月—2019年1月济南市中心某社区室外大气PM2.5样本,用重量法计算PM2.5浓度,GC/MS检测PAHs浓度,ICP-MS检测元素组分.发现济南市采暖季污染天PM2.5浓度与室外相对湿度呈显著正相关(r=0.7968,P<0.05);污染天PM2.5浓度显著高于非污染天,其负载的PAHs和元素浓度均随PM2.5的升高而升高,两种天气下PAHs环数占比、特征比值法和元素富集因子法得到的源解析结果接近.提示污染天PM2.5虽显著升高,但PM2.5中PAHs和元素均主要来自煤炭燃烧和尾气排放,污染源类型的构成却没有发生明显改变.  相似文献   

19.
本文分析了银川都市圈的商业/交通/居民混合区和工业区两类典型站点的大气挥发性有机物(VOCs)的日变化特征,并通过臭氧生成潜势(OFP)对其生成臭氧潜力进行了评估,此外,基于观测的光化学模型(OBM模型)分析了银川都市圈臭氧生成对前体物的敏感性.观测结果表明,观测期间银川都市圈臭氧呈单峰型日变化,其中商业/交通/居民混合区采样点峰值出现在16:00—18:00,臭氧日最高小时浓度范围为131—200μg·m-3;工业区采样点峰值出现在14:00—17:00,臭氧日最高小时浓度范围为155—186μg·m-3.商业/交通/居民混合区采样点和工业区采样点总挥发性有机物(TVOCs)日变化浓度均呈现出早晚高、日间低的趋势,最大浓度分别为28.70×10-9、165.84×10-9.烯烃对两个采样点臭氧生成潜势均有较大贡献,商业/交通/居民混合区和工业区采样点的贡献率分别为21.58%—67.59%和57.42%—89.73%.银川都市圈大气臭氧生成速率对VOCs中的烯烃和芳香烃的增量变化最为敏感,对CO以...  相似文献   

20.
类腐殖质(humic-like substances, HULIS)是水溶性有机碳(WSOC)中具有吸光特性的重要组分,对空气质量、气候变化和人体健康均有重要影响.尽管目前对HULIS的研究很多,但不同方法分离机理不同,对于HULIS的分离与测定仍然缺乏统一的标准,针对HULIS分离方法的研究很少.固相萃取法(solid phase extraction, SPE)因其操作简单、分离效果较好而被广泛应用,但对于低浓度样品仍存在检出限较高、回收率较低的问题,且很少有人关注提纯过程中流程空白所包含的含碳组分及其吸光能力.本研究通过调整活化溶液(0.01 mol·L-1 HCl溶液+甲醇+2%NH3H2O/MeOH)与洗脱溶液(2%NH3H2O/MeOH)用量的比例对提纯方法进行优化.结果表明,应用优化后的方法对流程空白进行测量时,检出限(MDL)降低到0.035 mg·L-1以下,精密度RSD <5.41%(n=20),标准品回收率达到95%,在保证回收率的情况下减少了流程空白,提高了样品的精密度,使测定浓度较低的HULIS含量成为可能.为了探究生物质燃烧期间含碳组分的光学特性和来源特征,本研究对2017年10月6日至11月9日南京北郊秋季大气气溶胶样品进行采集.采样期间PM2.5的浓度为(87.9±43.7)μg·m-3,WSOC和类腐殖质碳(HULIS-C)的浓度分别为(4.2±2.3)μg·m-3和(3.6±2.0)μg·m-3,HULIS-C占WSOC的比例为47.3%,是WSOC中的重要组成部分.本研究还对HULIS在330—400 nm波段的吸光进行测定,使用Angstrom指数(absorption angstrom exponent,AAE)进行表征,得到采样期间AAE的值为2—7,说明HULIS污染主要来自二次转化.后向轨迹结果表明,重污染期间污染物来源为本地生物质燃烧和区域或者长距离气团的输送.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号