首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过对广州市城区PM_(2.5)的质量浓度和含碳气溶胶的组分连续1 a的采样分析,获得了广州地区PM_(2.5)中含碳气溶胶的年变化特征,对广州市PM_(2.5)中有机碳OC的来源和烃类有机物的主要来源进行了分析。结果表明,化石燃料燃烧和汽车尾气污染对广州市PM_(2.5)中含碳有机物的贡献较大,植物排放对春秋季PM_(2.5)有一定的贡献,而夏季则同时受到植物源和人为源的污染;采用散点图法和比值-比值法对多环芳烃的来源进行了分析,机动车排放对低环数PAHs(Flu、Pyr)的贡献较大,生物质燃烧对高环数PAHs(Bghi P、Icd P)具有显著贡献,而且存在一定的光化学老化,而藿烷和EC主要来自机动车排放源;广州市PM_(2.5)中有机碳OC的主要来源为机动车排放、燃煤排放、生物质燃烧、餐饮油烟、二次形成和其他来源,冬季分别贡献15.3%、20.5%、8.0%、11.5%、14.9%和29.8%。  相似文献   

2.
上海市大气PM2.5中溶剂可抽提有机物的特征研究   总被引:3,自引:0,他引:3  
利用溶剂抽提、分离、毛细管气相色谱-质谱联用技术对2000年10月至2001年8月上海市5个不同功能区采集的大气PM_(2.5)样品中的溶剂可抽提有机物进行了检测,共检测出正构烷烃、单环芳烃、多环芳烃、有机酸、有机醇、有机酯等各类溶剂可抽提有机化合物267种。检出的82种多环芳烃中有15种属于美国EPA优先控制污染物名单。比较了不同季节、不同区域PM_(2.5)样品中正构烷烃、多环芳烃等化合物分布特征的差异。检出的喹啉类含氮杂环类化合物以及有机酸等污染物表现出一定的机动车排放特征。  相似文献   

3.
本文采用车载排放测试系统对11辆国Ⅰ~国Ⅳ标准重型柴油车进行实际道路测试,利用GC-MS对样品中典型烷烃进行定量分析,解析重型柴油车尾气典型烷烃排放特征及规律.结果表明,排放标准对重型柴油车尾气中正构烷烃、藿烷类有机物排放有显著影响,总体呈现随排放标准的加严而降低的趋势,相比于国Ⅰ测试车辆,国Ⅳ测试车辆正构烷烃、17α(H),21β(H)-C30藿烷(C30-藿烷)、22S-和22R-17α(H),21β(H)-C31升藿烷(22S-C31升藿烷;22R-C31升藿烷)总排放因子分别降低了72.23%,64.95%,70.78%和74.68%.气相正构烷烃呈双峰前锋型,以C17~C18为主峰碳,固相呈单峰前锋型,以C18~C21为主峰碳.藿烷类有机物其22S-C31升藿烷/(22S-C31升藿烷+22R-C31升藿烷)的比值在0.46~0.56之间,平均值为0.50,符合石油中藿烷的分布特征.正构烷烃总排放因子与17α(H),21β(H)-C30藿烷总排放因子呈现出一定的线性关系,其R~2为0.926 8.此外,行驶工况对测试车辆正构烷烃及藿烷类有机物排放有较大影响,非高速工况下排放因子是高速工况的1.69~2.42倍.  相似文献   

4.
为了探究长三角区域大气细颗粒物中非极性有机化合物的组成及来源特征,于2019年12月至2020年11月在临安区域大气本底站采集了129个PM2.5样品,对其有机碳(OC)、元素碳(EC)和非极性有机化合物(NPOCs,包括多环芳烃、正构烷烃和藿烷类)进行了分析,并用分子示踪物、特征比值和正定矩阵因子分析模型等方法探究了有机气溶胶的主要来源.结果表明,临安ρ(PM2.5)的年平均值约为(32.36±20.44)μg·m-3,ρ(NPOCs)年平均值约为(59.05±40.39)ng·m-3,呈现出冬高夏低的季节变化特征.正构烷烃主要源于化石燃料和生物质(草和木材等)燃烧等人为源,其次为高等植物角质层蜡排放;多环芳烃主要源于燃煤燃烧、机动车排放和生物质燃烧等非化石源的混合贡献;藿烷类物质主要源于机动车排放,其中冬季还受到燃煤源的影响.后向轨迹聚类分析和潜在源区分析表明临安主要受到外来气团输送的影响.结合正定矩阵因子分析模型对采样期间观测到的NPOCs进行源解析,得到了燃煤燃烧源、交通排放源和生物质燃烧等...  相似文献   

5.
为探讨采暖季和非采暖季大气颗粒物中有机标识组分的粒径分布特征,识别其来源,于2018年5月至2019年4月在天津采集分粒径颗粒物,利用GC-MS对9个粒径段颗粒物中17种多环芳烃(PAHs)、20种正构烷烃(n-Alkanes)和7种藿烷(hopanes)进行分析,并通过有机标识物及特征比值的方法探讨其主要来源。结果表明:非采暖季的四环多环芳烃Pyr、BaA、Chr和五环多环芳烃BbF、BaP呈3峰分布,其余PAHs呈双峰分布,采暖季的低环PAHs呈双峰分布,中高环PAHs近似单峰分布。根据PAHs特征比值发现,非采暖季的燃煤源和交通源是PAHs的主要贡献源,采暖季PAHs受燃煤源的影响更显著。非采暖季的正构烷烃中C29呈单峰分布,C27、C31、C32和C33近似单峰分布,其余正构烷烃呈双峰分布,采暖季的正构烷烃均呈双峰分布。根据正构烷烃碳优势指数(CPI)和主碳峰数(Cmax)发现,人为源是正构烷烃的主要来源,非采暖季受自然源的影响大于采暖季,自然源排放的正构烷烃倾向于富集在粗颗粒物上,人为源排放的正构烷烃则更倾向于富集在细颗粒物上。藿烷在粗粒径段和细粒径段均存在峰值。根据藿烷特征比值发现,非采暖季的藿烷受交通源的影响较大,采暖季的藿烷受燃煤源的影响更显著。  相似文献   

6.
餐饮油烟是大气有机颗粒物的重要来源之一.本研究在深圳市内选择了西餐、茶餐厅、职工食堂和韩式料理这4种类型的餐馆,通过对这4类餐厅的外场采样,分析各类型餐厅油烟中有机颗粒物的化学组成,筛选了餐饮油烟污染源的有机特征组分.结果表明,各餐馆排放的PM_(2.5)中,有机物占60%以上.在所有定量的有机组分之中,脂肪酸含量最高,其次是二元羧酸和正构烷烃,而多环芳烃、甾醇和单糖等有机组分的含量较低.颗粒物的有机组成特征受到菜系的影响,西餐厅和韩式料理排放脂肪酸、正构烷烃和多环芳烃等有机物含量较高,但却排放了低含量的甾醇和单糖,茶餐厅和职工食堂则相反.餐饮源颗粒物中Fla/(Fla+Pyr)和LG/(Gal+Man)的比值受菜系影响较小,也区别于其他污染源的特征比值,可以作为餐饮源潜在的示踪物.餐饮源为深圳市大气颗粒物贡献了大量的脂肪酸和二元羧酸.  相似文献   

7.
有机物是大气细颗粒物(PM_(2.5))的重要组成部分,其来源和组分非常复杂,是大气科学研究的难点和热点.本研究定量表征了上海地区夏季3个不同功能站点PM_(2.5)中78种有机组分,分析了其组成特征及空间差异,并采用后向轨迹、指示物、特征比值等方法对其来源进行了探讨.结果表明,上海西部郊区青浦和徐汇的有机组分检出浓度相近,约为(317±129)ng·m~(-3),高于东部沿海.78种有机组分中,脂肪酸类物质的占比最高,之后依次为左旋葡聚糖、正构烷烃和多环芳烃,藿烷的占比最低.基于示踪物比值法初步分析结果表明,上海地区的颗粒有机物主要来源于汽油车尾气排放,此外中心城区和西部郊区在观测期间受到了一定程度的生物质燃烧污染,可能与西北方向的污染输送有关.就具体组分而言,在西部郊区青浦,脂肪酸主要来自于陆生植物排放,而在东部沿海地区临港,其还会受到海洋浮游植物和微生物的影响;PAH特征比值的分析表明煤燃烧和机动车尾气对多环芳烃具有重要贡献.相关研究结果有助于对上海有机气溶胶的污染特征及来源的深入认识,为开展颗粒有机物的防治提供一定的基础支撑.  相似文献   

8.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

9.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大.  相似文献   

10.
北京城区和郊区大气细粒子有机物污染特征及来源解析   总被引:19,自引:4,他引:15  
2004年在定陵、北京大学、奥体中心、良乡、通州共5个采样点采集北京市PM2.5,样品,并对其中有机碳(OC)、元素碳(EC)和有机物组成进行了测定.分析了北京市城区和郊区细粒子中有机化合物的污染特征.共检出有机物188种.主要物种为正构烷烃、正构烷酸、霍烷、多环芳烃、脱氧单糖苷以及其它多种源的示踪物.各监测点有机物浓度均呈现1月浓度最高、10月其次,7月浓度最低,4月居中的特征.市区点(奥体、北大)和近郊点(良乡、通州)的污染物浓度远高于受人为活动影响较小的远郊定陵.以正构烷烃、霍烷、多环芳烃、左旋葡聚糖和EC为示踪物,利用化学质量平衡(CMB)受体模型对北京市PM2.5中的OC进行了来源解析.结果表明,北京市细粒子OC的主要来源为柴油车排放(15.3%)、汽油车排放(20.5%)、燃煤排放(19.0%)、生物质燃烧(2.1%)和植物碎屑(1.1%).机动车和燃煤排放仍然是北京市细粒子OC的主要来源.而且有加重趋势.  相似文献   

11.
用GC/MS,对金华地区3个采样点、四个季节,225个PM_(2.5)样品中10种极性有机示踪化合物进行了分析,包括天然源:3个异戊二烯SOA示踪物、1个α-蒎烯SOA示踪物和2个真菌孢子示踪物,和人为源:1个甲苯SOA示踪物、3个生物质燃烧示踪物.结果表明,异戊二烯SOA示踪物浓度为3.41~48.50 ng·m~(-3),α-蒎烯SOA示踪物浓度为2.45~25.40 ng·m~(-3),甲苯SOA示踪物为4.75~39.80 ng·m~(-3).各SOA示踪物均有明显的季节变化,其中,异戊二烯SOA示踪物呈夏季秋季≈春季冬季,α-蒎烯SOA示踪物夏季春季≈秋季冬季,甲苯SOA示踪物秋季夏季春季冬季.估算得出甲苯SOC对OC的贡献为3.03%~24.50%,而来源于生物质燃烧的有机碳对OC的贡献可以达到1.23%~42.80%.表明人为源排放前体物的二次转化以及生物质燃烧是金华地区大气细颗粒物污染的重要来源.  相似文献   

12.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

13.
朔州市市区PM2.5中元素碳、有机碳的分布特征   总被引:3,自引:2,他引:1  
采集朔州市市区4个点位采暖季和非采暖季环境空气PM2.5样品,利用Elementar Analysensysteme Gmb H vario EL cube型元素分析仪测定其中元素碳(elemental carbon,EC)和有机碳(organic carbon,OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行分析.结果表明,朔州市市区非采暖季PM2.5中OC和EC的平均浓度为(14.3±2.7)μg·m-3和(10.3±3.1)μg·m-3,采暖季OC、EC平均浓度分别为(23.3±5.9)μg·m-3和(20.0±5.7)μg·m-3;4个点位OC和EC的浓度均表现为采暖季大于非采暖季,其中在采暖季,点位SW中OC和EC浓度分别为28.5μg·m-3和28.1μg·m-3,高于其它采样点,在非采暖季,点位PS中OC和EC的浓度分别为17.7μg·m-3和14.1μg·m-3高于其它采样点;采暖季和非采暖季PM2.5中OC/EC值均小于2,但OC和EC相关性不好(在采暖季和非采暖季的相关系数分别为0.66和0.52),说明PM2.5中碳气溶胶来源复杂.控制碳组分一次排放来源,如燃煤烟尘、生物质燃烧及机动车尾气排放,同时关注二次污染是控制朔州市PM2.5的关键.朔州市市区采暖季和非采暖季PM2.5中二次有机碳(secondary organic carbon,SOC)浓度分别为(6.44±2.77)μg·m-3和(4.11±1.92)μg·m-3.  相似文献   

14.
为了解我国中小城市地区SOA(二次有机气溶胶)的质量浓度及来源,采集了浙江省中西部典型地区——兰溪市城区和近郊2个站点2016年四季的PM2.5样品,利用GC/MS(气相色谱/质谱)分析了PM2.5中11种指示不同来源的SOA示踪物的质量浓度水平,利用示踪物产率法估算了不同来源前体物对SOC(二次有机碳)的贡献.结果表明:兰溪市PM2.5中ρ(异戊二烯SOA示踪物)的年均值为40.79 ng/m3,约占检测示踪物总质量浓度的89%;ρ(α-蒎烯SOA示踪物)、ρ(β-石竹烯SOA示踪物)和ρ(甲苯SOA示踪物)的年均值分别为4.09、0.36和1.01 ng/m3.ρ(异戊二烯SOA示踪物)和ρ(α-蒎烯SOA示踪物)存在夏季 > 秋季 > 春季 > 冬季的季节性变化趋势,ρ(β-石竹烯SOA示踪物)为秋季、冬季 > 春季、夏季,而ρ(甲苯SOA示踪物)的季节性变化不显著,表明不同类型VOCs(挥发性有机物)前体物排放量的季节性变化明显不同.基于示踪物产率法的估算结果表明:夏季异戊二烯等植物源VOCs可能是兰溪市PM2.5中SOA的主要来源;而春季、秋季、冬季甲苯等人为源VOCs是SOA的主要前体物,贡献了兰溪市PM2.5中ρ(SOC)的60%左右.研究显示,减少人为源VOCs的排放对相关地区灰霾及大气细颗粒物污染的防控具有重要作用.   相似文献   

15.
为对比城区与相邻县区不同空气质量下的碳组分污染特征,分别在成都市和仁寿县采集霾期及非霾期PM_(2.5)有效样品共计88个,确定其相应质量和各碳组分浓度[有机碳(OC)、元素碳(EC)和二次有机碳(SOC)等],并进行各碳组分之间的相关性及主成分分析.结果表明,不同空气质量下的城区污染物浓度均高于县区.OC和EC密切相关,非霾期的相关性系数较霾期大.与城区相比,霾期县区的SOC/PM_(2.5)较大,说明其受二次有机物污染更为明显;但城区非霾期二次气溶胶占比明显高于霾期,表明霾期的一次排放是城区大气污染的主要原因.燃煤、机动车排放和生物质燃烧均是两个区域PM_(2.5)的主要来源.  相似文献   

16.
兰州春夏季PM10碳组分昼夜变化特征与来源分析   总被引:3,自引:2,他引:1  
马丽  余晔  王博  赵素平  李刚 《环境科学》2017,38(4):1289-1297
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响.  相似文献   

17.
叶招莲  刘佳澍  李清  马帅帅  许澎 《环境科学》2017,38(11):4469-4477
为更好地了解碳质组分的特点和来源,在常州市采集了夏季(7~8月)和秋季(10~11月)60个细颗粒物(PM_(2.5))样品.采样期间,夏季PM_(2.5)、OC、EC平均浓度分别为73.0、14.3和3.3μg·m~(-3),秋季为84.2、13.2和3.5μg·m~(-3).总碳质组分(OC+EC)占PM_(2.5)总质量的24.3%(夏季)和20.7%(秋季).采用IMPROVE-A热/光反射法测定的碳质8组分结果表明,OC2、OC3、OC4和EC1相关性好(r0.92),EC2和EC3相关性较好(r0.65),说明可能的相似来源.OC与EC相关性中等,表明碳质组分来源复杂.秋季WSOC/OC(60.9%)略高于夏季(57.4%),而夏季SOC/OC(52.5%)略高于秋季(49.0%).夏季和秋季SOC/OC都低于WSOC/OC,说明部分水溶性有机碳是一次源.WSOC和SOC相关性强,进一步验证了大部分SOC具有水溶性.碳质组分之间的关系及主成分分析表明,采样期间燃煤和机动车尾气排放是碳质组分的两个主要来源.后向轨迹分析表明,采样点PM_(2.5)和碳质组分主要受当地排放源和短距离传输的影响,长距离传输贡献较小.  相似文献   

18.
利用先进的高分辨飞行时间气溶胶质谱仪(High Resolution Time-of-Flight Aerosol Mass Spectrometer,HR-To F-AMS),于2017年9月8日—2017年10月8日对上海市城区开展了亚微米级颗粒物化学组分、粒径及其污染来源的在线测量.结果表明,观测期间上海城区亚微米颗粒物质量浓度平均为(22.0±17.2)μg·m-3;其中,有机物是PM1的主要贡献者,平均占总颗粒物浓度的49.3%,硫酸根、硝酸根和铵根的占比分别为24.2%、10.5%和9.7%.上海城区亚微米级颗粒物中无机盐组分类(硝酸根,硫酸根和铵根)具有较为一致的粒径分布,峰值粒径主要集中在空气动力学粒径500~600 nm.有机物的粒径分布峰值位于空气动力学粒径400~500 nm,且在小粒径范围内有较高的有机物浓度,表明存在一定程度的一次排放.观测期间有机气溶胶呈现明显的多峰分布,硫酸根、铵根和氯离子呈白天低、夜间高的特点,而硫酸根和黑碳的日变化并不明显.基于高分辨率有机质谱计算得到上海城区有机气溶胶氧碳比(O/C)的平均比值为0.37;有机物与有机碳(OM/OC)的平均比值1.65.利用正矩阵因子解析(PMF)模型对有机气溶胶高质量分辨率质谱进行来源解析,得到4类有机气溶胶:HOA(还原态有机气溶胶)、COA(餐饮源有机气溶胶)、MO-OOA(高氧化性有机气溶胶)和LO-OOA(低氧化性有机气溶胶),分别占有机气溶胶总量的15%、20%、32%和26%,说明观测期间上海城区有机气溶胶主要来自二次气溶胶的贡献.  相似文献   

19.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

20.
家庭室内PM2.5中POPs污染状况及其与儿童哮喘的关系   总被引:1,自引:1,他引:0  
为了探讨家庭室内PM_(2.5)中POPs的污染状况及其与儿童哮喘的关系.于2014年12月—2015年3月对上海市29个哮喘患儿童及31个健康儿童的家庭室内PM_(2.5)进行采样.采用GC-MS测定了样本中13种PBDEs、17种PAHs及27种PCBs的质量浓度,用GC-μECD测定了9种OCPs的质量浓度,并用SPSS19.0进行数据的统计学分析.家庭室内PM_(2.5)中持久性有机污染物污染状况的结果表明,所有样本∑PBDEs的浓度平均值为32.2 pg·m~(-3),其中,BDE-209占比最大(61.7%);∑PAHs浓度平均值为52.3 ng·m~(-3),7种致癌多环芳烃占比51.8%;∑OCPs浓度平均值为1016.4 pg·m~(-3),HCHs占比最大(43.7%),其次为DDTs,占比29.1%;∑PCBs浓度平均值为72.7 pg·m~(-3),以PCB-82、PCB-99、PCB-8及PCB-49为主.分析污染状况与哮喘的关系发现,病例组样本的∑PBDEs浓度和∑PAHs浓度高于对照组,两者间的差异具有统计学意义(p0.05);病例组样本的∑OCPs浓度和∑PCBs浓度低于对照组,仅∑OCPs浓度在两组间的差异具有统计学意义(p0.05).研究表明,家庭室内PM_(2.5)中POPs污染普遍存在,且哮喘儿童患者家庭室内PM_(2.5)中部分PBDEs、PAHs、OCPs浓度与对照组之间存在显著差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号