首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Deep emission cuts rely on the use of low carbon technologies like renewable energy or carbon capture and storage. There is considerable uncertainty about their future costs. We carry out a sensitivity analysis based on Gauss Quadrature for cost parameters describing these technologies in order to evaluate the effect of the uncertainty on total and marginal mitigation costs as well as composition changes in the energy system. Globally, effects in total cost often average out, but different regions are affected quite differently from the underlying uncertainty in costs for key abatement technologies. Regions can be either affected because they are well suited to deploy a technology for geophysical reasons or because of repercussions through international energy markets. The absolute impact of uncertainty on consumption increases over the time horizon and with the ambition of emission reductions. Uncertainty in abatement costs relative to expected abatement costs are however larger under a moderate ambition climate policy scenario because in this case the marginal abatement occurs in the electricity sector where the cost uncertainty is implemented. Under more ambitious climate policy in line with the two degree target, the electricity sector is always decarbonized by 2050, hence uncertainty has less effect on the electricity mix. The findings illustrate the need for regional results as global averages can hide distributional consequences on technological uncertainty.  相似文献   

2.
The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon.  相似文献   

3.
中国能源消费排放的CO2测算   总被引:5,自引:3,他引:2       下载免费PDF全文
周伟  米红 《中国环境科学》2010,30(8):1142-1148
基于“能源-经济-环境”的MARKAL-MACRO模型和数理人口学中的Keyfitz模型,测算未来中国能源消费需求;考虑能源效率、能源结构的变化以及气候变化问题的约束,设定了能源消费的3种情景,并分别测算了CO2排放量.结果表明,在基准情景下,中国的CO2排放在2042年达到峰值,为118.47亿t;在能源结构优化情景下,CO2排放在2036年达到峰值,为107.53亿t;在气候变化约束情景下,CO2排放在2031年达到峰值,为94.72亿t,相对于基准情景,排放峰值降低了23.75亿t,且峰值时间提前11a.随着城市化与工业化的推进,电力、水泥、钢铁行业的碳排放将先上升后下降;由于机动车保有量的增加,交通运输业的碳排放将持续上升.  相似文献   

4.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

5.

In China, the power industry contributes significantly to carbon emissions, reducing carbon emissions in this industry is conducive to China's adaptation and mitigation of climate change. Researches on green and low-carbon power have attracted increasing attention. In this paper, we analyze and compare the carbon emissions from thermal power sector in 30 Chinese provinces, divided into three main regions. Based on the panel data over the period 2002–2016, we use a slacks-based measurement (SBM) model to measure the carbon emission efficiency of China’s power sector. The results show that the carbon emission efficiency of the system is relatively low, with marked differences among regions. Based on the Moran’s I, we further found spatial heterogeneity in carbon emission efficiency of provincial power sector. Policies for adaptation and mitigation of climate change should have regional differences. Interregional collaboration also plays a key role in adapting to and mitigating climate change. For China, it is an important issue to develop clean coal-fired power generation and vigorously develop renewable energy. From a global perspective, energy transformation needs to be continuously promoted. Promoting low-carbon transformation of global energy system requires deep technical cooperation and synergy. Global mitigation strategy should focus on the orientation of structural reform and constantly optimize the energy structure.

  相似文献   

6.
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m2/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (−5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (−2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS—a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.  相似文献   

7.
韩楠  罗新宇 《自然资源学报》2022,37(5):1277-1288
京津冀地区是中国核心经济区的重要组成部分,也是碳排放重点区域,其碳排放早日达峰对实现国家达峰目标尤为关键。通过分析碳排放及影响因素的关系,构建碳排放系统动力学模型,并设置六种情景方案,模拟预测其对北京、天津和河北碳达峰时间、峰值及减排潜力的影响。结果显示:(1)基准情景下,北京已经实现碳达峰,天津预计2023年碳达峰,而河北则难在2035年前达峰。(2)协调发展情景即综合调控政策,较单一措施情景,各地区碳减排效果最优;其中,北京2020—2030年碳排放较基准情景下降13.52%,天津碳达峰可提前至2021年,河北则可在2030年达到峰值。(3)单一措施情景下,环保情景对北京碳减排作用最显著,而节能减排情景则是实现天津与河北碳达峰的最佳发展模式。  相似文献   

8.
The objective of this paper is to compare different scenarios for carbon (C) sequestration in the forest sector in Finland. Forest inventory data was used as input data to simulate the dynamics of C sequestration with a gap-type forest simulation model and a wood product model. In the baseline scenario, current forest management practices were applied. In another scenario, current recommendations for forest management were applied, which resulted in more intensive harvesting than in the baseline scenario. Both scenarios were also applied under changing climatic conditions to demonstrate the possible effect of climate change on C sequestration.This study demonstrates that C sequestration assessments should include not only C in the biomass of trees, but also C in the soil and in the wood products, as well as interactions between the respective pools. Partial assessments are likely to result in misleading estimates of the actual C sequestration. Forest management affects the distribution of C between the pools and the changing climate is likely to change this distribution. The Kyoto Protocol deals with only a limited part of the forestry and forest C cycle and C accounting accordingly can provide results that depart substantially from more complete accounting.  相似文献   

9.
第十三届全国人民代表大会第五次会议提出要致力于推进碳达峰碳中和工作,促进经济社会向全面绿色低碳转型,实现高质量发展.西安高新区作为陕西省重要的科技创新和产业聚集区,经济发展在很大程度上依赖于能源消耗,碳减排的任务就显得尤为艰巨.以西安高新区为研究对象,首先通过系统核算园区内碳排放,对不同能源种类和不同行业企业碳排放现状进行分析;然后利用Kaya模型设定多种独立的碳达峰情景,预测不同情景下的碳排放总量值及碳达峰时间;最后结合西安高新区发展特点科学甄选相应的碳减排路径,给出合理的减排建议.结果表明,目前电力消耗碳排放占比最多且份额呈逐年上升趋势,工业碳排量始终占主导地位且第三产业发展日益蓬勃;碳排放因子情景、能源强度情景和经济水平情景这3种情景下可于2030年达到碳达峰,其中经济发展水平对西安高新区未来碳达峰的峰值和时间影响最大,产业结构情景、能源结构情景和人口规模情景在2030年前没有出现峰值;未来减排路径主要从电力部门脱碳、经济稳健高质量发展、能源及产业结构绿色升级和构建绿色交通体系入手,可为实现碳中和预留更多的准备时间,也为我国工业园区低碳发展提供决策参考.  相似文献   

10.
The study presents the results of an integrated assessment of carbon capture and storage (CCS) in the power plant sector in Germany, with special emphasis on the competition with renewable energy technologies. Assessment dimensions comprise technical, economic and environmental aspects, long-term scenario analysis, the role of stakeholders and public acceptance and regulatory issues. The results lead to the overall conclusion that there might not necessarily be a need to focus additionally on CCS in the power plant sector. Even in case of ambitious climate protection targets, current energy policy priorities (expansion of renewable energies and combined heat and power plants as well as enhanced energy productivity) result in a limited demand for CCS. In case that the large energy saving potential aimed for can only partly be implemented, the rising gap in CO2 reduction could only be closed by setting up a CCS-maximum strategy. In this case, up to 22% (41 GW) of the totally installed load in 2050 could be based on CCS. Assuming a more realistic scenario variant applying CCS to only 20 GW or lower would not be sufficient to reach the envisaged climate targets in the electricity sector. Furthermore, the growing public opposition against CO2 storage projects appears as a key barrier, supplemented by major uncertainties concerning the estimation of storage potentials, the long-term cost development as well as the environmental burdens which abound when applying a life-cycle approach. However, recently, alternative applications are being increasingly considered?Cthat is the capture of CO2 at industrial point sources and biomass based energy production (electricity, heat and fuels) where assessment studies for exploring the potentials, limits and requirements for commercial use are missing so far. Globally, CCS at power plants might be an important climate protection technology: coal-consuming countries such as China and India are increasingly moving centre stage into the debate. Here, similar investigations on the development and the integration of both, CCS and renewable energies, into the individual energy system structures of such countries would be reasonable.  相似文献   

11.
This paper provides an analysis of co-benefits for traditional air pollutants made possible through global climate policies using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model in the time horizon up to 2050. The impact analysis is based on projections of energy consumption provided by the Prospective Outlook for the Long term Energy System (POLES) model for a scenario without any global greenhouse gas mitigation efforts, and for a 2°C climate policy scenario which assumes internationally coordinated action to mitigate climate change. Outcomes of the analysis are reported globally and for key world regions: the European Union (EU), China, India and the United States. The assessment takes into account current air pollution control legislation in each country. Expenditures on air pollution control under the global climate mitigation regime are reduced in 2050 by 250 billion € when compared to the case without climate measures. Around one third of financial co-benefits estimated world-wide in this study by 2050 occur in China, while an annual cost saving of 35 billion (Euros) € is estimated for the EU if the current air pollution legislation and climate policies are adopted in parallel. Health impacts of air pollution are quantified in terms of loss of life expectancy related to the exposure from anthropogenic emissions of fine particles, as well as in terms of premature mortality due to ground-level ozone. For example in China, current ambient concentrations of particulate matter are responsible for about 40 months-losses in the average life expectancy. In 2050, the climate strategies reduce this indicator by 50 %. Decrease of ozone concentrations estimated for the climate scenario might save nearly 20,000 cases of premature death per year. Similarly significant are reductions of impacts on ecosystems due to acidification and eutrophication.  相似文献   

12.
This study analyzes the options for meeting power demand in the Brazilianpower sector through the year 2015. Three policy cases are constructedto test economic and environmental policy measures against a baseline:advanced technologies scenario, environmental control scenario and carbon(C) elimination scenario. Least-cost modeling simulated these scenarios throughchanges in emissions fees and caps, costs for advanced technologies,demand side efficiency, and clean energy supplies. Results show that, in theabsence of alternative policies, new additions to Brazil's electric powersector will shift rapidly from hydroelectricity to combined-cycle natural gasplants. When the cost of environmental impacts are incorporated in theprice of power, the least-cost mix of electric power generation technologycould change in other ways. In all scenarios, energy efficiency andcogeneration play an important role in the least-cost power solution. Savingelectricity through increased efficiency offsets the needs for new supply andhas enormous potential in Brazil's industrial sector. Efficiency also reducesthe environmental burden associated with electricity production andtransmission, without compromising the quality of the services demandedby end users. Interesting enough, carbon dioxide (CO2) emissions will remainrelatively low under almost every conceivable scenario.  相似文献   

13.
基于LEAP模型,构建了2015~2040年兰州市道路交通发展“零措施”的基准(BAU)情景以及低碳(LC)和强化低碳(ELC)这2个节能减排情景,模拟评估各项政策和措施下能源消耗情况和温室气体与大气污染物协同减排效果.结果表明,LC情景能源消耗和CO2排放将于2026年达峰,ELC情景能源消耗和CO2排放将于2020年达峰;两种情景下,NOx、 CO、 HC、 PM2.5和PM10等污染物排放量于2015~2017年间开始出现大幅下降,下降趋势于2023年前后逐渐减缓.结合措施可行性和减排成本,LC情景可作为兰州市道路交通碳达峰减排情景:到2040年能源消耗量、 CO2、 NOx、 CO、 HC、 PM2.5和PM10排放相对于BAU情景的削减率分别达到-24.17%、-26.57%、-55.38%、-65.91%、-72.87%、-76.66%和-77.18%.兰州市道路交通当前应以公共...  相似文献   

14.
An important subset of the utility sector has been scarcely explored for its ability to reduce carbon dioxide emissions: consumer-owned electric utilities significantly contribute to U.S. greenhouse gas emissions, but are often excluded from energy efficiency and renewable energy policies. They sell a quarter of the nation's electricity, yet the carbon impact of these sales is not well understood, due to their small size, unique ownership models, and high percentage of purchased power for distribution. This paper situates consumer-owned utilities in the context of emerging U.S. climate policy, quantifying for the first time the state-by-state carbon impact of electricity sales by consumer-owned utilities. We estimate that total retail sales by consumer-owned utilities account for roughly 568 million metric tons of CO2 annually, making this sector the 7th largest CO2 emitter globally, and examine state-level carbon intensities of the sector in light of the current policy environment and the share of COU distribution in the states. Based on efficiency and fuel mix pathways under conceivable regulations, carbon scenarios for 2030 are developed.  相似文献   

15.
Challenge of global climate change: Prospects for a new energy paradigm   总被引:1,自引:0,他引:1  
Perspectives on the challenge posed by potential future climate change are presented including a discussion of prospects for carbon capture followed either by sequestration or reuse including opportunities for alternatives to the use of oil in the transportation sector. The potential for wind energy as an alternative to fossil fuel energy as a source of electricity is outlined including the related opportunities for cost effective curtailment of future growth in emissions of CO2.  相似文献   

16.
孙倩  张美玲  王鑫婧  徐士博 《环境科学》2023,44(10):5842-5851
在碳达峰、碳中和的背景下,草地碳汇是实现碳中和的关键路径.基于第六次国际耦合模式比较计划(CMIP6)气候情景数据,运用Daycent模型对甘肃草地2015~2100年碳收支进行模拟,并利用趋势分析法研究未来78 a草地碳收支的时空变化规律.结果表明,SSP245未来气候情景下,净生态系统生产力(NEP)呈不显著波动下降趋势,速率(以C计,下同)达-0.20 g ·(m2 ·a)-1,且该情景下草地碳汇处于下降状态;SSP585未来气候情景下,草地NEP以1.36 g ·(m2 ·a)-1的速率呈显著波动上升趋势,草地碳汇逐渐增加;草地碳收支的空间分布由西北向东南递增;SSP585气候情景下的温度和降水的增幅高于SSP245的气候情景,且草地碳收支与降水量的变动具有一致性,与温度的变化呈反向关系.研究明确了在不同气候情景下甘肃草地的碳汇强度,对有效固碳有参考和促进作用.  相似文献   

17.
石化化工行业是高耗能高排放行业之一,约占工业部门碳排放比例的10%,研究石化化工行业碳排放达峰路径不仅能推动工业部门尽早实现达峰,同时也为石化化工行业加快绿色低碳转型指明方向. 基于中国统计年鉴、行业协会、企业碳核查等多来源数据,在分析历史排放趋势的基础上,识别能源集中度高的重点行业和产品,采用情景分析法针对石油和天然气开采业、石油煤炭及其他燃料加工业、化学原料及化学制品制造业三大子行业中的炼油、乙烯、丙烯、对二甲苯和合成氨等重点产品,预测其基准情景和控排情景下的重点产品产量和碳排放强度,以及石化化工行业2021—2035年二氧化碳排放趋势. 石化化工行业在基准情景下排放量无法实现2030年前达峰,控排情景下将于2030年达峰,峰值为17.3×108 t. 通过能源结构调整、节能和低碳技术改造、低碳循环及高效利用等途径可以实现行业减排,与BAU(仅考虑石化产品产量变化,不考虑产品结构、单位产品能耗变化)情景相比,减排贡献最大的路径是化石能源利用清洁化改造,2030年相对BAU减排1.19×108 t,贡献率约44%;其次是加大节能和低碳技术改造力度和资源循环及高效利用,减排量分别为0.8×108和0.6×108 t,减排贡献率分别达到29%和22%.   相似文献   

18.
全球气候变化日益引起各国和公众的关注,我国也针对气候变化和二氧化碳减排进行了大量研究以应对挑战。文章在全面总结中国碳减排的研究文献基础上,从碳排放量估算及其影响因素、二氧化碳减排的情景分析、政策技术措施的潜力和成本分析、区域碳减排等4个方面系统归纳分析了我国主要的碳减排研究现状,提出了碳减排研究前景与展望,并建议开发适用于我国的碳减排研究模型,加强我国不同行业不同区域的碳减排研究,提出客观可行的减排措施。  相似文献   

19.
通过细化机组级燃煤发电财务状况建模,测算了提前退役、灵活性调整、限制和停止新增等情景下煤电搁浅资产风险,明确了不同情景下导致搁浅资产规模及时空分布情况.结果表明:存量煤电机组是引起搁浅资产的主体,控制新增煤电有助于降低搁浅资产风险,提前退役、灵活性调整情景下中国现存和新增煤电搁浅资产总规模分别为1.90万亿和3.98万亿元;不同转型情景导致煤电搁浅资产的年际分布差异明显,提前退役搁浅压力主要集中于2030~2040年间,灵活性调整情景下则集中于2021~2035年间;煤电搁浅资产空间分布极不均衡,山东、内蒙古、江苏等10个煤电大省搁浅资产规模占全国的67%和70%.因此,煤电低碳转型需审慎决策,重视提前退役造成的煤电资产搁浅,更要防范和控制灵活性调整导致的煤电资产减值,重点关注山东、内蒙古、新疆、江苏等重点省份,制定因地制宜的煤电转型策略,帮助电力相关企业及政府等进行减排政策选择.  相似文献   

20.

Corporate image, European Emission Trading System and Environmental Regulations, encourage pulp industry to reduce carbon dioxide (CO2) emissions. Kraft pulp mills produce CO2 mainly in combustion processes. The largest sources are the recovery boiler, the biomass boiler, and the lime kiln. Due to utilizing mostly biomass-based fuels, the CO2 is largely biogenic. Capture and storage of CO2 (CCS) could offer pulp and paper industry the possibility to act as site for negative CO2 emissions. In addition, captured biogenic CO2 can be used as a raw material for bioproducts. Possibilities for CO2 utilization include tall oil manufacturing, lignin extraction, and production of precipitated calcium carbonate (PCC), depending on local conditions and mill-specific details. In this study, total biomass-based CO2 capture and storage potential (BECCS) and potential to implement capture and utilization of biomass-based CO2 (BECCU) in kraft pulp mills were estimated by analyzing the impacts of the processes on the operation of two modern reference mills, a Nordic softwood kraft pulp mill with integrated paper production and a Southern eucalyptus kraft pulp mill. CO2 capture is energy-intensive, and thus the effects on the energy balances of the mills were estimated. When papermaking is integrated in the mill operations, energy adequacy can be a limiting factor for carbon capture implementation. Global carbon capture potential was estimated based on pulp production data. Kraft pulp mills have notable CO2 capture potential, while the on-site utilization potential using currently available technologies is lower. The future of these processes depends on technology development, desire to reuse CO2, and prospective changes in legislation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号