首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
方雪慧  赵洁  舒莉  高永  叶招莲 《环境科学》2015,36(6):2010-2018
采用4种不同波长的准分子光源(Xe Cl*、Kr Cl*、Xe Br*和Kr Br*)降解气相的乙酸乙酯.对比了外加3种负载型光催化剂(有机膜负载Ti O2、有机膜负载石墨烯和纱网负载Ti O2)条件下乙酸乙酯的去除率,考察了光源类型、辐射功率和气体初始浓度对去除率的影响.同时,测定了不同光源的辐射光谱和辐射功率,计算了不同反应条件下的光子效率.结果表明,乙酸乙酯去除率按Kr Br*Kr Cl*Xe Cl*Xe Br*依次降低,而Xe Cl*和Kr Br*光源降解乙酸乙酯气体可以得到较高的光子效率;有机膜负载Ti O2比不加催化剂时乙酸乙酯去除率和光子效率都有所提高,但提高幅度不大.气体流速和乙酸乙酯初始浓度升高,光子效率升高.采用Kr Br*准分子灯直接光解乙酸乙酯,实验条件为:辐射功率0.76 W,乙酸乙酯初始浓度946mg·m-3,气体流速600 m L·min-1,光子效率为5.63%.  相似文献   

2.
纳米TiO2光催化降解海洋石油污染   总被引:1,自引:1,他引:0  
以紫外灯为光源,考察了自制纳米TiO2在TiO2/H2O2光催化体系中降解海洋石油污染的效率.研究光催化降解催化剂用量、溶液pH值、污染物浓度以及催化时间等因素对光催化降解海洋石油污染的影响。结果表明,纳米TiO2/H2O2光催化体系能有效降解海洋石油污染,且比单独使用纳米TiO2光催化效果好,纳米TiO2光催化/H2O2体系中由于在紫外光的照射下H2O2分解为大量的.OH从而使得降解效率在短时间内大大提高。优化的光催化降解条件为:降解1 L油污染海水的催化剂用量为10 mg、油污染海水的初始浓度为120 mg/L、催化时间为30 min,当pH=6~7时,加入H2O2的体积(质量浓度为60%)为10 mL,油污染海水的降解率可达98.12%。  相似文献   

3.
低浓度甲苯的气相光催化降解研究   总被引:19,自引:2,他引:17  
研究了较低浓度的甲苯在较短停留时间时(17s~83s)的光催化降解,考察了甲苯初始浓度、停留时间、湿度、光源和催化剂载体等因素的影响,并分析了光催化处理降解能力随甲苯负荷的变化.研究表明,在较短停留时间时,甲苯降解率随进口浓度的增大而下降,且停留时间越短,随进口浓度增大而下降的越快;在某一停留时间范围内,甲苯的降解近似遵循一级反应动力学,动力学常数随浓度的增大而增大;低浓度时甲苯的光催化降解受湿度影响较小;低压汞灯为光源时甲苯的光催化降解率显著高于黑光灯为光源时的降解率;涂覆在不锈钢网状上的光催化剂性能随载体目数的增加而提高,但不及涂覆在铝板上的光催化剂.  相似文献   

4.
对以工业丙烷为燃料、空气为氧化剂、TiCl4为先驱物的火焰CVD法制备的含碳纳米C-TiO2光催化剂,用沉降法在石英玻璃管内壁制备C-TiO2纳米薄膜,以管式反应器为光催化氧化装置,实验研究了含碳纳米C-TiO2的纳米薄膜对甲苯气体的光催化降解规律。探讨了甲苯初始浓度和相对湿度等因素对降解率的影响。实验结果表明,相对湿度约为60%时,对甲苯有最佳的光催化降解效果。在催化剂负载量约为4.9mg、主波长为254nm和365nm的8W紫外灯各一盏、甲苯初始浓度约为60mg/m3、气体流量为400mL/min(甲苯在光催化器中停留时间约为3.45s)的条件下,甲苯的降解率可达45%。  相似文献   

5.
负载化纳米TiO_2光催化降解气相甲苯   总被引:3,自引:2,他引:1  
使用高比表面积的玻璃弹簧为载体,水热合成法制备了TiO2膜光催化剂,并在密闭循环式反应系统中进行甲苯的气相光催化降解实验。考察了气体流速、空气相对湿度、污染物初始浓度和催化剂用量对甲苯降解效率的影响,并采用GC/MS测定光催化降解过程中的气体组分及其含量,没有发现除甲苯以外的其它气相组分,最后测试了催化剂在高污染物浓度时的使用寿命。  相似文献   

6.
分子筛固载Fe2+-Fenton法降解水中甲基橙的研究   总被引:13,自引:1,他引:12  
单因素实验考察了不同Fe2+负载量、甲基橙溶液初始浓度、温度、催化剂用量、pH值以及H2O2浓度对降解率的影响。正交实验优化了降解反应条件,得出各因素影响显著性的先后顺序为:pH值、温度、反应时间、催化剂用量、H2O2浓度。结果表明:在常压、温度为35℃,起始pH值为3.00、H2O2浓度为0.552mmol/L、催化剂浓度为0.83g/L、反应时间为80min的最佳条件下,甲基橙降解率可达98.15%。对催化剂进行了紫外照射处理回收再生,功率100W条件下,照射3h后再生催化剂活性可达原来的80.64%。  相似文献   

7.
光助芬顿反应催化降解气体中甲苯   总被引:3,自引:0,他引:3  
以甲苯作为挥发性有机污染物(VOCs)的代表,利用连续进气动态实验装置,研究光助芬顿反应降解气体中甲苯的作用.考察了芬顿试剂溶液初始p H、H2O2浓度、Fe2+浓度以及甲苯初始浓度对降解甲苯的影响,并利用在线质谱和色谱对产物进行了定性、定量分析.结果表明,紫外光照加快了羟基自由基的生成,显著提高了气体中甲苯的去除率;p H=3.0、H2O2浓度为20 mmol·L-1、Fe2+浓度为0.3 mmol·L-1的条件下,甲苯去除率最高;当甲苯初始浓度为260 mg·m-3时,去除率能够达到98%;光助芬顿反应催化降解气体中甲苯实验未检测到CO2之外的中间产物,CO2产率分析表明去除的甲苯全部转化为CO2.  相似文献   

8.
ZnO-TiO_2在三相光催化反应器中降解酸性大红的研究   总被引:1,自引:1,他引:0  
以Ti(SO4)2和ZnSO4.7H2O为原料,利用共沉淀法制备了ZnO-TiO2纳米复合材料作为光催化剂,用XRD和UV-vis等对其进行了表征。在自制的三相内循环光催化反应器中,对pH值、催化剂加入量、酸性大红初始浓度对降解率的影响进行了探讨。结果表明,当pH=10、催化剂用量为0.8mg/L、初始浓度为25mg/L、光照时间为90min时,酸性大红的降解率可达98.82%;动力学研究表明:在实验浓度范围内,酸性大红的光催化反应符合一级动力学方程,反应速率常数(k)与初始溶液浓度(C0)的关系为lnk=-0.8096lnC0-1.2362。  相似文献   

9.
氮掺杂TiO_2光催化降解甲基橙染料废水的试验研究   总被引:4,自引:0,他引:4  
采用溶胶-凝胶法以尿素为氮源制备了氮掺杂锐钛矿型纳米TiO2光催化剂(TEM像图显示制备的样品的平均粒径在20 nm左右,UV-vis漫反射分析表明氮掺杂使催化剂的吸收带边红移至550 nm的可见光区域),以氙灯为辐照光源,用自制光催化反应器降解甲基橙染料溶液,研究了催化剂用量、染料初始浓度和环境pH值变化对甲基橙降解率的影响,同时考察了催化剂在太阳光下的光催化活性,结果表明:当催化剂用量为2 g/L、溶液pH值为2.74时,初始浓度为10 mg/L的甲基橙在氙灯光照45 min后降解率达100%;自然光照120 min后降解率为95.4%。  相似文献   

10.
纳米TiO_2纤维的制备及其光催化降解甲醛研究   总被引:1,自引:1,他引:0  
以胶原纤维为模板制备纳米TiO2纤维用于光助催化降解甲醛气体,用扫描电镜(SEM)、X射线衍射(XRD)和N2吸附-脱附技术对纳米TiO2纤维进行了表征。结果表明,纳米TiO2纤维的比表面积为11.33 m2/g,晶型为锐钛矿型。在相同催化反应条件下纳米TiO2纤维对甲醛气体的催化降解率与商品纳米TiO(2Degussa P25)催化剂相当。纳米TiO2纤维的用量、甲醛气体初始浓度是影响催化效果的两个因素。当甲醛气体初始浓度为0.270 mg/m3,相对湿度为38%,气体流速0.1 L/min,纳米TiO2纤维用量为1.0 g时,甲醛的降解率达到96%。因此,纳米TiO2纤维可用于室内甲醛气体的催化降解。  相似文献   

11.
流态化TiO2光催化降解甲苯的实验   总被引:2,自引:0,他引:2  
廖聪  张小平 《环境工程》2006,24(6):45-48
在自制的流化床反应器中,以实验室制备的TiO2/硅胶为催化剂,对甲苯、空气混合气进行光催化降解,探讨了初始浓度、紫外光强度、操作气速和床层高度等因素对甲苯降解率的影响。实验结果表明:在低浓度范围内(20~55mg/m3),甲苯降解率不随浓度变化,高达100%,但浓度进一步增加后降解率下降;甲苯降解率随紫外光强度的增加而提高,但提幅不大;甲苯初始浓度越低,维持最高降解率的时间越长;操作气速存在最佳值3·98cm/s,达到此值时降解效果最好;甲苯降解率随床层高度(静态高度)的增加而线性提高。  相似文献   

12.
ZnFe_2O_4/TiO_2光催化剂制备及乙酰甲胺磷降解性能研究   总被引:3,自引:1,他引:2  
分别采用共沉淀法和溶胶-凝胶法制备了ZnFe2O4和掺杂ZnFe2O4的纳米级TiO2光催化剂,进行了XRD、TEM和UV visDRS表征,以卤素灯为光源对纳米TiO2降解水溶液中乙酰甲胺磷农药进行了研究。考察了反应液初始pH值、催化剂用量、H2O2用量对降解率的影响。实验结果表明,焙烧温度为400℃、掺杂量为0.5%的ZnFe2O4/TiO2纳米粉体降解效果最佳,在相同条件下,反应2h后农药降解率可比纯TiO2提高20%左右。正交实验优化了降解反应条件,在常温常压下,起始pH值为12、H2O2浓度为12mmol/L、催化剂浓度为0.5g/L、反应3h后,初始浓度为1.0×10-4mol/L的乙酰甲胺磷农药降解率可达61.2%。  相似文献   

13.
TiO2多孔性薄膜光催化降解低浓度甲醛   总被引:7,自引:3,他引:4  
采用不锈钢丝网负载TiO2多孔性薄膜光催化剂,在间歇式循环光催化反应系统中研究了气相中低浓度甲醛的光催化降解,考察了催化剂载体、催化剂镀膜次数、甲醛初始浓度和光源等因素的影响,并对光催化剂的稳定性进行了研究.结果表明,甲醛降解率随着丝网目数的增加而增大;丝网使用数量的增多会提高甲醛降解率,但其影响随着丝网数量的增多而逐渐减弱;催化剂镀膜次数从1次增加到6次时,光催化剂的活性先上升后下降;当甲醛初始浓度在1.34~10.72mg/m3范围内增加时,甲醛的浓度变化值相应明显增大,但甲醛降解率先升高继而下降;光源采用杀菌灯时甲醛降解率比黑光灯时约高出19.0%,增大光强度使甲醛降解率提高了20.5%;光催化剂连续使用4次后,仍保持较高的催化活性.  相似文献   

14.
以苯为目标污染物,玻璃弹簧负载型TiO2膜为催化剂,在紫外线照射下,探讨了自制反应器内湿度、苯气体的流速和初始浓度对降解效果的影响。结果表明:气体流速为5L/min时苯的降解效率为74.6%,湿度为30%时苯的降解效率为81.6%,初始浓度为0.158mg/L时苯的降解效率为94%,在这三种情况下苯的降解效果最好。  相似文献   

15.
相对干燥条件下甲苯,苯和氯仿的光催化降解   总被引:15,自引:0,他引:15       下载免费PDF全文
研究了甲苯,苯和氯仿3种挥发性有机物在相对干燥条件下的动态气相光催化降解,考察了进口浓度,流量(停留时间),催化剂,光源等因素的影响.研究表明,在较低污染物浓度,流量小于0.2L/min(停留时间大于3.825min)时,甲苯,苯和氯仿的光催化去除率均大于90%,遵循一级反应动力学,甲苯和苯的半衰期分别在1.0~1.34min和0.65~1.1min;在研究的负荷范围内,甲苯和苯的去除量随负荷增加达到一个最大值,而氯仿则一直随之增大;催化剂的光催化性能与污染物种类有关,同样功率的杀菌灯效果好于黑光灯.  相似文献   

16.
Ti/RuO2 电氧化法降解藻毒素MCLR 影响因素的研究   总被引:8,自引:1,他引:7       下载免费PDF全文
使用Ti/RuO2 阳极,对电氧化法降解微囊藻毒素MCLR 的效能及其影响因素进行了研究.结果显示,电流密度增大有利于MCLR 的降解,当电流密度为8mA/cm2,水力停留时间(HRT)为23min 时, MCLR 的去除率可达到100%.以0.02mol/L Na2SO4 作为电解质时, MCLR 降解效果较好,去除率可达到100%,而以0.02mol/L NaNO3 为电解质时, MCLR 降解效果较差,去除率只有50%. MCLR 初始浓度对降解效率影响较大, MCLR 初始浓度为3.3µg/L 时,去除率可达到96%; MCLR 初始浓度为198µg/L 时,去除率只有60%. Na2SO4 电解质浓度和水样流速对藻毒素MCLR 降解效果影响不明显.  相似文献   

17.
采用宅气鼓泡结合玻璃珠(鼓泡窄化)的方法,对酸性红B等染料的降解进行了研究,考察了各种因素(鼓泡时间,初始浓度,玻璃珠直径,溶液酸度和气体流速等)对酸性红B降解的影响.结果表明,在室温(25℃)条件下,当鼓泡时间为5.0 h、溶液初始浓度为10 mg·L-1、玻璃珠直径为3.0~3.5 mm、溶液酸度pH=6.0和气体流速4.5 L·min-1时,酸性红B的降解率可达97%以上.同时,还初步探讨了鼓泡空化的形成过程和降解有机污染物的机理.推测是气泡融合时气泡之间的内壁张力达到极限致使气泡破裂,放出大量能量,使水(H2O)和氧气(O2)反应乍成氧化性极强的氧氧自由基(·OH)和超氧自由基(·O2-),使溶液中的有机污染物降解.  相似文献   

18.
光催化降解制浆漂白废水试验条件的优化   总被引:1,自引:0,他引:1  
制浆漂白废水的主要成分之一氯代愈创木酚在TiO2作催化剂、254nm波长的紫外光作光源时,发生光催化降解反应,苯环特征峰在反应过程中逐渐消失。采用正交试验得到较佳的试验条件,结果表明,有机物的初始浓度是一个关键因素,其次是溶液的酸碱度,降解时间的延长可以提高光催化降解效果,同时还要考虑催化剂的用量和反应器的循环流量等工艺参数。在初始浓度为0.05mmol/L、循环流量20L/h、催化剂用量250mg/L、pH值10、反应180min时,降解率达到99%。  相似文献   

19.
实验考察了在不同二氧化氯投加量、柱孢藻毒素(CYN)初始浓度、pH值及温度下柱孢藻毒素的降解效果,对二氧化氯降解柱孢藻毒素的反应动力学进行了探讨。结果表明,ClO_2能有效地降解柱孢藻毒素。CYN降解率随ClO_2投加量的增大而提高。当CYN初始浓度在15.11μg/L以下,CYN初始浓度对ClO_2降解CYN的影响不明显;当高于15.11μg/L增大,CYN初始浓度CYN降解率提高。温度为25℃的CYN降解率接近于30℃的,两者的CYN降解率均高于15℃的。酸性条件下CYN降解率高于碱性和中性条件的。在25℃/pH值7.05,柱孢藻毒素初始浓度为28.04μg/L,ClO_2投加量为0.5 mg/L 30 min CYN降解率达83.69%,120 min达92.62%。ClO_2降解CYN的反应为三级反应,在温度30、25和15℃时相应的速率常数分别为9.30×10~(-4)、9.90×10~(-4)和9.83×10~(-5)L~2/(μg~2·s);反应活化能为12.29 kJ/mol,ClO_2降解CYN在常温下反应迅速。  相似文献   

20.
氮掺杂二氧化钛复合催化膜降解甲苯气体研究   总被引:4,自引:0,他引:4  
采用溶胶-凝胶法以聚丙烯(PP)中空纤维膜为载体制备了N-Ti O2/PP复合催化膜,并考察了其催化降解甲苯有机废气的性能.结果发现,紫外光催化的甲苯降解率可达84%,去除负荷为89.8 g·m-3·h~(-1),自然光催化的甲苯降解率可达63.9%,去除负荷为69.25 g·m-3·h~(-1).同时,采用紫外-可见光谱(UV-Vis)、X-射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)表征了N-Ti O2/PP复合催化膜,并采用GC-MS分析甲苯降解过程的中间产物并推测甲苯反应过程机理.采用GC-MS分析出口气样的研究结果表明,苯(C6H6)、苯甲醛(C7H6O)、苯乙酸(C8H8O2)、丙烯醛(C3H4O)、甲酸甲酯(C2H4O2)为甲苯光催化降解的中间产物.N-Ti O2/PP复合催化膜降解甲苯的机制为甲苯气体通过中空纤维膜传质到N-Ti O2/PP复合催化膜,光催化产生羟基自由基,甲苯气体被羟基自由基氧化成中间产物,并继续降解为最终产物二氧化碳和水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号