首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polybrominated diphenyl ethers (PBDEs) were measured in atmosphere and soil samples taken in winter and summer at a PBDE production area of Laizhou Bay in China. The concentrations of P11PBDE were 0.017–1.17 ng/m3 in gaseous phase, 0.5–161.1 ng/m3 in particulate phase, and 73–2629 ng/g dry weight in soil samples. The PBDE congener pattern in the gaseous phase di ered from that in the particulate phase, and the PBDE congener pattern in the particulate phase was similar with that in soil. This demonstrated that there was little di erence with atmospheric particle-soil transfer e ciency among PBDE congeners. In addition, there were seasonal variations in percentages on particle for lower brominated congeners. The BDE-28 was mostly in the gaseous phase in summer (88.3%), whereas the average proportion of BDE-28 in gaseous phase in winter was 38.9%. Higher brominated congeners (i.e., BDE-206, BDE- 207, BDE-208, and BDE-209) were bound to the atmospheric particulate phase, and their potentials for long-range migration were mainly a ected by the environmental behavior of atmospheric particles. Results indicated that PBDE congeners in summer were closer to gas-particle partition equilibrium than in winter. Temperature should be considered the main factor causing nonequilibrium in winter.  相似文献   

2.
In summer 2010, twenty eight(14 PM_(2.5)samples plus 14 samples PM_(2.5–10)) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse(PM_(2.5–10)) and fine(PM_(2.5)) smoke samples. The carbonaceous content(elemental and organic carbon) of particulate matter was analysed by a thermal–optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds(aliphatics, polycyclic aromatic hydrocarbons(PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography–mass spectrometry(GC–MS). Emissions were dominated by the fine particles, which represented around 92% of the PM_(10). A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon(OC/EC)ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM_(2.5)levels.  相似文献   

3.
The concentration of polychlorinated biphenyls (PCBs) in the urban air of Dalian, China was monitored from November 2009 to October 2010 with active high-volume sampler and semipermeable membrane device (SPMD) passive sampler. The concentration of PCBs (particle + gas) ( ∑ PCBs) ranged from 18.6 to 91.0 pg/m 3 , with an average of 50.9 pg/m 3 , and the most abundant dioxin-like PCB (DL-PCBs) was PCB118. The WHO-TEQ values of DL-PCBs were 3.6-22.1 fg/m3 , with an average of 8.5 fg/m 3 , and PCB126 was the maximum contributor to ∑ TEQ. There was a much larger amount of PCBs in the gas phase than in the particulate phase. The dominant PCB components were lower and middle molecular weight PCBs. With increasing chlorination level, the concentration of the PCB congeners in the air decreased. The gas-particulate partitioning of PCBs was different for the four seasons. The gas- particulate partitioning coefficients (logK p ) vs. subcooled liquid vapor pressures (logP L 0 ) of PCBs had reasonable correlations for different sampling sites and seasons. The absorption mechanism contributed more to the gas-particulate partitioning process than adsorption. Correlation analysis of meteorological parameters with the concentration of PCBs was conducted using SPSS packages. The ambient temperature and atmospheric pressure were important factors influencing the concentration of PCBs in the air. The distribution pattern of the congeners of PCBs and the dominant contributors to DL-PCBs and TEQ in active samples and SPMDs passive samples were similar. SPMD mainly sequestrated gas phase PCBs.  相似文献   

4.
The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from −33%–29%, 95%–300%, 64%–261%, 117%–122% to −13%–0%, −20%–80%, −31%–50%, −17%–23%. The improved model explains 69%–98% of the observed atmospheric Hg decrease during 2013–2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.  相似文献   

5.
Sulfate, nitrate and ammonium(SNA) are the dominant species in secondary inorganic aerosol, and are considered an important factor in regional haze formation. Size-fractionated aerosol particles for a whole year were collected to study the size distribution of SNA as well as their chemical species in Shanghai. SNA mainly accumulated in fine particles and the highest average ratio of SNA to particulate matter(PM) was observed to be 47% in the fine size fraction(0.49–0.95 μm). Higher sulfur oxidation ratio and nitrogen oxidation ratio values were observed in PM of fine size less than 0.95 μm. Ion balance calculations indicated that more secondary sulfate and nitrate would be generated in PM of fine size(0.49–0.95 μm). Sulfur K-edge X-ray absorption near-edge structure(XANES) spectra of typical samples were analyzed. Results revealed that sulfur mainly existed as sulfate with a proportion(atomic basis) more than 73% in all size of PM and even higher at 90% in fine particles. Sulfate mainly existed as(NH4)2SO4 and gypsum in PM of Shanghai. Compared to non-haze days, a dramatic increase of(NH4)2SO4 content was found in fine particles on haze days only, which suggested the promoting impact of(NH4)2SO4 on haze formation. According to the result of air mass backward trajectory analysis, more(NH4)2SO4 would be generated during the periods of air mass stagnation. Based on XANES, analysis of sulfate species in size-fractionated aerosol particles can be an effective way to evaluate the impact of sulfate aerosols on regional haze formation.  相似文献   

6.
Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.  相似文献   

7.
8.
TiO_2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve its photocatalytic activity, the Ti-coating Mg Al hydrotalcite(Ti–Mg Al–LDH) was prepared by chemical vapor deposition(CVD) method.Response surface method(RSM) was employed to evaluate the effect of Ti species coating parameters on the photocatalytic activity, which was found to be affected by the furnace temperature, N2 flow rate and influx time of precursor gas. Application of RSM successfully increased the photocatalytic efficiency of the Ti–Mg Al–LDH in methylene blue photodegradation under UV irradiation, leading to improved economy of the process.According to the results from X-ray diffraction, scanning electron microscopy, Brunner–Emmet–Teller and Barrett–Joyner–Hallender, thermogravimetric and differential thermal analysis, UV–vis diffuse reflectance spectra analyses, the Ti species(TiO_2or/and Ti~(4+)) were successfully coated on the Mg Al–LDH matrix. The Ti species on the surface of the Ti–Mg Al–LDH lead to a higher photocatalytic performance than commercial TiO_2-P25. The results suggested that CVD method provided a new approach for the industrial preparation of Ti-coating Mg Al–LDH material with good photocatalytic performances.  相似文献   

9.
The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume sampler, simultaneously. PAS1 successfully collected the entire target SCCPs in the ambient air. Air SCCPs sampled by PAS1 were found be in the linear uptake stage during 181 days of sampling. Passive and active samples showed comparable congener profiles, and the dominant contributors of SCCPs in the two kinds of samples were similar. A significant linear correlation was observed between the total concentration of SCCPs sampled by PAS1 and active sampler in the four seasons. The passive sampling rates of the PAS1 for the gas and particulate phases of SCCPs were measured. The quantitative structure–property relationship of the sampling rate of PAS1(Rair) for gas-phase SCCPs was studied. From the molecular point of view, Rairwas mainly affected by the molecular weight and sub-cooled liquid vapor pressure of SCCPs. In general, SCCPs in the urban air of Dalian mainly existed in gas phase,lower molecular weight SCCPs primarily occurred in the gas phase, whereas higher molecular weight SCCPs were predominately adsorbed or absorbed on airborne particles. The air concentration of SCCPs in the four seasons were different, the correlation of the concentration of SCCPs in the air with the meteorology parameters was conducted. The exposure risk by intake air SCCPs of the residents around the sampling sites was evaluated according to the European risk assessment standards.  相似文献   

10.
Acid-catalyzed heterogeneous oxidation with hydrogen peroxide(H2O2) has been suggested to be a potential pathway for secondary organic aerosol(SOA) formation from isoprene and its oxidation products. However, knowledge of the chemical mechanism and kinetics for this process is still incomplete. 3-Methyl-2-buten-1-ol(MBO321), an aliphatic alcohol structurally similar to isoprene, is emitted by pine forests and widely used in the manufacturing industries. Herein the uptake of MBO321 into H2SO4–H2O2mixed solution was investigated using a flow-tube reactor coupled to a mass spectrometer. The reactive uptake coefficients(γ) were acquired for the first time and were found to increase rapidly with increasing acid concentration. Corresponding aqueous-phase reactions were performed to further study the mechanism of this acid-catalyzed reaction. MBO321 could convert to 2-methyl-3-buten-2-ol(MBO232) and yield isoprene in acidic media. Organic hydroperoxides(ROOHs) were found to be generated through the acid-catalyzed route,which could undergo a rearrangement reaction and result in the formation of acetone and acetaldehyde. Organosulfates, which have been proposed to be SOA tracer compounds in the atmosphere, were also produced during the oxidation process. These results suggest that the heterogeneous acid-catalyzed reaction of MBO321 with H2O2 may contribute to SOA mass under certain atmospheric conditions.  相似文献   

11.
Atmospheric aerosol samples(PM_(2.5–0.3), i.e., atmospheric particles ranging from 0.3 to2.5 μm) were collected during two periods: spring–summer 2008 and autumn–winter 2008–2009, using high volume samplers equipped with cascade impactors. Two sites located in the Northern France were compared in this study: a highly industrialised city(Dunkirk) and a rural site(Rubrouck). Physicochemical analysis of particulate matter(PM) was undertaken to propose parameters that could be used to distinguish the various sources and to exhibit seasonal variations but also to provide knowledge of chemical element composition for the interpretation of future toxicological studies. The study showed that PM2.5–0.3concentration in the atmosphere of the rural area remains stable along the year and was significantly lower than in the urban or industrial ones, for which concentrations increase during winter.High concentrations of polycyclic aromatic hydrocarbons(PAHs), dioxins, furans and dioxin like polychlorinated biphenyls(DL-PCBs), generated by industrial activities, traffic and municipal wastes incineration were detected in the samples. Specific criteria like Carbon Preference Index(CPI) and Combustion PAHs/Total PAHs ratio(CPAHs/TPAHs) were used to identify the possible sources of atmospheric pollution. They revealed that paraffins are mainly emitted by biogenic sources in spring–summer whereas as in the case of PAHs, they have numerous anthropogenic emission sources in autumn-winter(mainly from traffic and domestic heating).  相似文献   

12.
The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) sig nificantly influences the air quality in the Sichuan Basin (SCB).Understanding the O3for mation during autumn and winter is necessary to understand the atmospheric oxidative capacity.Therefore,continuous in-site field observations were carried out during the late summer,early autumn and winter of 2020 in a rural area of Chongqing.The total volatile organic compounds (VOCs)...  相似文献   

13.
The characteristics of wintertime volatile organic compounds (VOCs) in the North China Plain (NCP) region are complicated and remain obscure. VOC measurements were conducted by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at a rural site in the NCP from November to December 2018. Uncalibrated ions measured by PTR-ToF-MS were quantified and the overall VOC compositions were investigated by combining the measurements of PTR-ToF-MS and gas chromatography-mass spectrometer/flame ionization detector (GC-MS/FID). The measurement showed that although atmospheric VOCs concentrations are often dominated by primary emissions, the secondary formation of oxygenated VOCs (OVOCs) is non-negligible in the wintertime, i.e., OVOCs accounts for 42% ± 7% in the total VOCs (151.3 ± 75.6 ppbV). We demonstrated that PTR-MS measurements for isoprene are substantially overestimated due to the interferences of cycloalkanes. The chemical changes of organic carbon in a pollution accumulation period were investigated, which suggests an essential role of fragmentation reactions for large, chemically reduced compounds during the heavy-polluted stage in wintertime pollution. The changes of emission ratios of VOCs between winter 2011 and winter 2018 in the NCP support the positive effect of “coal to gas” strategies in curbing air pollutants. The high abundances of some key species (e.g. oxygenated aromatics) indicate the strong emissions of coal combustion in wintertime of NCP. The ratio of naphthalene to C8 aromatics was proposed as a potential indicator of the influence of coal combustion on VOCs.  相似文献   

14.
An interactive dual-circulating fluidized bed system has been proposed in which the pyrolysis of sewage sludge(SS) and incineration of biomass proceed simultaneously, and alumina is used as the bed material and heat carrier. The alumina coated with biomass ash would mix with sewage sludge in the pyrolysis reactor of this device. It is important to know the influence of composite alumina(CA) on the pyrolysis progress. Sewage sludge was pyrolyzed in a fixed bed reactor from 400 to 600°C using CA as catalyst. The effects of temperature and CA additive ratio on the products were investigated. The product yields and component distribution of non-condensable gas were more sensitive to the change of temperature, and the maximum liquid yield of 48.44 wt.% and maximum Useable Energy of Liquid of 3871 k J/kg sludge were observed at 500°C with 1/5 CA/SS(mass ratio). The gas chromatography–mass spectrometry results showed that the increase of temperature enhanced devolatilization of organic matter and promoted cyclization and aromatization of aliphatics. The presence of CA could strengthen secondary cracking and interaction among primary products from different organic compounds, such as acid–amine condensation,and reduce the content of oxygenated compounds. When the CA additive amount exceeded a certain proportion, the aromatization was clearly strengthened. The effects of CA on decomposition of fatty acids and formation of aromatics were similar to that of temperature. This means that the reaction temperature could be lowered by introducing CA, which has a positive effect on reducing energy consumption.  相似文献   

15.
Domestic coal stove is widely used in China, especially for countryside during heating period of winter, and polycyclic aromatic hydrocarbons (PAHs) are important in flue gas of the stove. By using dilution tunnel system, samples of both gaseous and particulate phases from domestic coal combustion were collected and 18 PAH species were analyzed by GC-MS. The average emission factors of total 18 PAH species was 171.73 mg/kg, ranging from 140.75 to 229.11 mg/kg for bituminous coals, while was 93.98 mg/kg, ranging from 58.48 to 129.47 mg/kg for anthracite coals. PAHs in gaseous phases occupied 95% of the total of PAHs emission of coal combustion. In particulate phase, 3-ring and 4- ring PAHs were the main components, accounting for 80% of the total particulate PAHs. The total toxicity potency evaluated by benzo[a]pyrene-equivalent carcinogenic power, sum of 7 carcinogenic PAH components and 2,3,7,8-tetrachlorodibenzodioxin had a similar tendency. And as a result, the toxic potential of bituminous coal was higher than that of anthracite coal. Efficient emission control should be conducted to reduce PAH emissions in order to protect ecosystem and human health.  相似文献   

16.
Mineral dust particles play an important role in the formation of secondary inorganic aerosols, which largely contribute to haze pollution in China.During this study, a haze episode(haze days) and a typical haze process mixed with sandstorm(sandy haze days)were observed in Zhengzhou with a series of high-time-resolution monitoring instruments from November 22 to December 8, 2018.Concentrations of PM_(10) and crustal elements clearly increased in the sandy haze days.Concentrations of gaseous pollutants, metallic elements emitted from anthropogenic sources, nitrate, and ammonium during sandy haze days were slightly lower than those during the haze days but still obviously higher than those during the non-haze days.The sulfate concentrations, the sulfate fractions in PM_(2.5),and the sulfur oxidation ratios significantly increased in the sandy haze days.Heterogeneous reactions dominated the conversion of SO_2 during the haze and sandy haze days.Enhanced SO_2 conversion during the sandy haze days may be attributed to the high concentrations of transition metal ions from the sandstorm when the values of relative humidity(RH) were in 30%–70%, and high O_3 at certain time points.Gas-phase NO_2 oxidation reactions were the main pathways for nitrate formation.In the sandy haze days,higher nitrogen oxidation ratio(NOR) at daytime may be associated with higher RH and lower temperature than those in the haze days, which facilitate the gas-to-particle partitioning of nitrate; higher NOR values at night may be attributed to the higher O_3 concentrations, which promoted the formation of N_2O_5.  相似文献   

17.
Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM_(2.5))in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study,a novel system for the on-line measurement of water-soluble components in PM_(2.5), the particle-into-liquid sampler(PILS)–Nebulizer–aerosol chemical speciation monitor(ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol(SOA). The PILS–Nebulizer–ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM_(2.5).  相似文献   

18.
Waste cutting emulsions are difficult to treat efficiently owing to their complex composition and stable emulsified structure. As an important treatment method for emulsions, chemical demulsification is faced with challenges such as low flocs–water separation rates and high sludge production. Hence, in this study, Fe3O4 magnetic nanoparticles (MNPs) were used to enhance chemical demulsification performance for treating waste cutting emulsions under a magnetic field. The addition of MNPs significantly decreased the time required to attain sludge–water separation and sludge compression equilibrium, from 210 to 20 min. In addition, the volume percentage of sludge produced at the equilibrium state was reduced from 45% to 10%. This excellent flocculation–separation performance was stable over a pH range of 3–11. The magnetization of the flocculants and oil droplets to form a flocculant–MNP–oil droplet composite, and the magnetic transfer of the composite were two key processes that enhanced the separation of cutting emulsions. Specifically, the interactions among MNPs, flocculants, and oil droplets were important in the magnetization process, which was controlled by the structures and properties of the three components. Under the magnetic field, the magnetized flocculant–MNP–oil droplet composites were considerably accelerated and separated from water, and the sludge was simultaneously compressed. Thus, this study expands the applicability of magnetic separation techniques in the treatment of complex waste cutting emulsions.  相似文献   

19.
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.  相似文献   

20.
The Hg0 vapor adsorption experimental results on a novel sorbent obtained by impregnating a commercially available activated carbon (Darco G60 from BDH) with silver nitrate were reported. The study was performed by using a fundamental approach, in an apparatus at laboratory scale in which a synthetic flue gas, formed by Hg0 vapors in a nitrogen gas stream, at a given temperature and mercury concentration, was flowed through a fixed bed of adsorbent material. Breakthrough curves and adsorption isotherms were obtained for bed temperatures of 90, 120 and 150°C and for Hg0 concentrations in the gas varying in the range of 0.8–5.0 mg/m3. The experimental gas-solid equilibrium data were used to evaluate the Langmuir parameters and the heat of adsorption. The experimental results showed that silver impregnated carbon was very effective to capture elemental mercury and the amount of mercury adsorbed by the carbon decreased as the bed temperature increased. In addition, to evaluate the possibility of adsorbent recovery, desorption was also studied. Desorption runs showed that both the adsorbing material and the mercury could be easily recovered, since at the end of desorption the residue on solid was almost negligible. The material balance on mercury and the constitutive equations of the adsorption phenomenon were integrated, leading to the evaluation of only one kinetic parameter which fits well both the experimentally determined breakthrough and desorption curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号