首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章研究建立了一套电渗析法深度处理铜冶炼废水的小试装置,以某铜冶炼厂废水处理站出水为原水,通过实验,确定了电渗析法的极限电流密度,研究了电压、进水流量、进水浓度等参数对电渗析深度处理工艺出水水质的影响,并通过对比测试不同的阻垢剂对自来水、电渗析进水、电渗析出水的阻垢率,探讨电渗析出水回用后的结垢问题。结果表明:该电渗析装置的极限电流为0.42 A,极限电流密度为1.3 mA/cm2;最佳操作电压为20 V,适宜的进水流量为20 L/h,进水浓度对淡水水质影响不大;采用浓水循环工艺,淡水产率可提高至约80%,浓室TDS超过15 000 mg/L,对浓水的后续处理处置创造了条件;各阻垢剂对电渗析出水的阻垢率为72.0%~76.9%,远大于对电渗析进水的阻垢率,也显著大于对常规自来水的阻垢率。  相似文献   

2.
电-Fenton法处理苯酚废水影响因素的研究   总被引:3,自引:0,他引:3  
采用电-Fenton法对含苯酚废水进行处理,以石墨为阴极、铁为阳极,并向阴极不断通入空气,电解过程产生的H2O2与阳极溶解的Fe2 形成Fenton试剂,Fenton试剂在电解过程中产生大量活性羟基自由基,能够很好地氧化降解废水中的苯酚.实验结果表明:影响苯酚去除率的因素主次顺序为pH值、电解质浓度、电解电压、电解时间、进水苯酚浓度.单因素分析得出电-Fenton法处理苯酚模拟废水的最优反应条件:pH值控制在2左右,反应时间为60 min,电解电压选10 V,Na2SO4的浓度为30 g/L,进水苯酚浓度为150 mg/L.在最优条件下苯酚的去除率为82%.  相似文献   

3.
Ti/RuO2-TiO2-IrO2-SnO2电极电解氧化含氨氮废水   总被引:4,自引:0,他引:4  
研究了含氨氮(NH4 -N)废水在循环流动式电解槽中的电化学氧化,其中阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极.考察了出水放置时间、进水流量和电流密度对氨氮去除的影响,并对能耗、阳极效率和瞬时电流效率(ICE)进行分析.结果表明,在氯离子浓度为400 mg/L,初始氨氮浓度为40 mg/L时,进水流量对氨氮去除的影响不大,电流密度的影响比较大.在进水流量为600 mL/min,电流密度为20 mA/cm2,电解时间为90 min时,氨氮去除率为99.37%,去除1 kg氨氮的能耗和阳极效率为500 kW·h和2.68 h·m2·A,瞬时电流效率(ICE)为0.28.表明电解氧化含氨氮废水具有较好的应用前景.  相似文献   

4.
试验采用厌氧流化床-生物阴极型双室微生物燃料电池(AFB-MFC)反应器,研究模拟废水的COD、NH3-N的去除效果和产电性能。结果表明,以葡萄糖为底物,在阳极室的COD容积负荷为5.0~10.0 kg/(m~3·d),HRT分别为16 h和24 h的条件下,AFB-MFC系统的厌氧流化床部分对COD的去除有很好的效果,COD去除率始终稳定在95%以上。阴极室对于NH3-N有很好的效果,平均去除率达到95%,阳极室对于NH3-N的去除在50%左右。系统在进水COD为5 000 mg/L,阳极室的COD容积负荷为5.0 kg/(m~3·d),阴极室为1.2 kg/(m~3·d)时产电效果最好。电压最高可达340 mV,能持续稳定产电70 h,功率密度为12.8 mW/m~2。另外,通过扫描电镜观察到厌氧生物颗粒中大部分为杆菌,其余为球形菌和丝状菌等。  相似文献   

5.
构建双极室微生物燃料电池(microbial fuel cell,MFC),利用硫酸盐还原菌(sulfate-reducing bacteria,SRB)处理模拟酸性矿山废水,考察5 mg/L重金属离子(Cu~(2+)、Zn~(2+)、Ni~(2+)和Cr6+)对电池产电性能的影响。MFC阳极室有效体积为12 m L,电极材料为碳毡,连续进水,流速为1.9 m L/h,水力停留时间HRT为6.3 h。进水不添加重金属离子时,MFC电压能够升高到200 m V,最大功率密度为55.6 m W/m2(13.89 W/m3),COD平均去除率为57.6%;进水添加重金属离子混合液时,电压由最高180.9 m V降到最低34.7 m V,COD去除率由64.2%逐渐降为7.2%;停止添加重金属,电压逐渐升到400 m V,最大功率密度达222 m W/m2(55.56 W/m3),COD去除率逐渐上升至58.3%。分析认为,重金属离子对SRB菌活性产生抑制作用导致电压和COD去除率显著下降,但是,重金属离子沉淀修饰了MFC阳极,提高了电子的传递性能,MFC产电电压升高。  相似文献   

6.
电-Fenton装置的优化与焦化废水的深度处理   总被引:1,自引:1,他引:0  
制备了以缚在不锈钢网表面的活性炭纤维作为阴极,钛片为阳极的电Fenton装置,研究了pH、电压、曝气流量和支持电解质Na2SO4的变化对该装置产生H2O2的影响。结果显示:pH为3时,电压为3~9 V,H2O2生成量随着电压的增大而升高;反应时间为140 min,初期H2O2浓度随时间的增加而增加,60 min后,H2O2浓度趋于稳定,最大为26.6 mg/L;体系中溶解氧的存在是产生H2O2的必要条件,H2O2浓度随着曝气流量的增加而增大。采用该装置处理某焦化厂A2O出水,在pH为3,电压为9 V,阴阳极板距离为30 mm,Na2SO4加入量为5 g/L,曝气流量为600 mL/L,Fe2+投加量为0.2 mmol/L的条件下运行2 h,废水COD值明显下降,最大去除率为82.5%。  相似文献   

7.
采用响应面法对双极膜电渗析分离发酵液中乳酸的工艺条件进行了优化。根据四元二次中心组合原理设计实验确定最佳分离条件,并对各工艺条件之间的交互影响进行了研究。结果表明:乳酸的最佳分离条件为:电压22.74V,进料体积比为1.63,出料室初始乳酸浓度为12.58g/L,流量为25.88L/h。升高电压的同时减小流量,或者降低出料室初始乳酸浓度的同时降低进料体积比,均有利于提高乳酸回收率。  相似文献   

8.
为了探究双室微生物燃料电池同时处理活性污泥及氨氮废水的性能及机理,利用微生物燃料电池阳极室处理活性污泥,阴极室处理氨氮废水。分析了阳极室不同灭菌与未灭菌污泥的添加比例,阴极室是否接种硝化菌及不同氨氮初始浓度下微生物燃料电池的产电特性,通过各反应器的电流密度、功率密度及极化曲线变化来分析微生物燃料电池的最佳运行条件。通过化学需氧量(COD)、氨氮、微生物群落差异化分析微生物燃料电池处理活性污泥及氨氮废水的性能。结果表明:微生物燃料电池在阳极灭菌污泥与未灭菌污泥比例为1∶10时,阳极室COD去除率均达到80%以上,此时阴极室接种硝化菌且氨氮初始浓度为50 mg/L的条件下产电效果最好,获得电流密度峰值为366.38 m A/m~2,且峰值持续时间最长;当阴极接种硝化菌时,不同的阴阳极室条件下阴极室氨氮都可以完全去除。  相似文献   

9.
采用具有三隔室重复单元的电渗析中试装置从丙烯酸丁酯废水中回收有机酸,考察了操作电压对转化过程的影响。结果表明,操作电压对装置的处理能力、能耗和回收有机酸浓度均具有重要影响。随着操作电压从50V增加到100 V,平均电流密度从16.91 mA/cm2线性增加到55.22 mA/cm2,电渗析时间显著缩短;生产单位有机酸的能耗从0.10 kW·h/mol线性增加到0.20 kW·h/mol。操作电压从50 V提高到100 V时,伴随有机酸根迁移的水量增加,而伴随钠离子迁移的水量减少,使50 V下获得的有机酸浓度较高,而NaOH浓度较低。  相似文献   

10.
采用电絮凝法预处理兰炭废水中COD。在装有可溶铁阳极、石墨阴极的PVC电解槽中进行了COD的去除研究,针对影响电絮凝工艺的主要影响因素(反应时间、进水pH、电流密度及极板间距)进行了正交实验。结果表明,在电絮凝进水pH为9~11条件下,极板间距为主要的影响因素。当进水COD为22 920 mg/L时,在电絮凝反应时间为3 h、进水pH为10、电流密度120 A/m2和极板间距为20 mm的条件下,COD去除率为22.9%;在此条件下,去除1 kgCOD消耗电能0.464 kW·h,消耗铁0.17 kg。  相似文献   

11.
新型单室无质子膜微生物燃料电池性能研究   总被引:5,自引:1,他引:4  
采用不锈钢金属丝阳极构建了管状单室无质子交换膜空气阴极微生物燃料电池(MFC),并以葡萄糖为唯一电子供体,研究MFC的性能.在室温下,初始ρ(CODCr)为496 mg/L,外接电阻为1 000 Ω时,该MFC可以连续产电,最高电压达235.11 mV,开路电压为461.00 mV,内电阻约2 820 Ω.实验条件下测得该MFC的最大功率密度为137.1 mW/m2,库仑效率为32.4%.采用该MFC进行了啤酒酿造废水处理对比实验,在进水ρ(CODCr)为15 900 mg/L,停留时间为96 h下,MFC对废水CODCr的去除率达40%~55%,比厌氧生物处理效率高5%~10%.表明MFC技术可以在获得电能的同时,强化有机废水的生物处理过程.  相似文献   

12.
Ti/RuO2-TiO2-IrO2-SnO2电极电解氧化含氨氮废水   总被引:4,自引:0,他引:4  
徐丽丽  施汉昌  陈金銮 《环境科学》2007,28(9):2009-2013
研究了含氨氮(NH4-N)废水在循环流动式电解槽中的电化学氧化,其中阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极.考察了出水放置时间、进水流量和电流密度对氨氮去除的影响,并对能耗、阳极效率和瞬时电流效率(ICE)进行分析.结果表明,在氯离子浓度为400 mg/L,初始氨氮浓度为40  mg/L时,进水流量对氨氮去除的影响不大,电流密度的影响比较大.在进水流量为600 mL/min,电流密度为20 mA/cm2 ,电解时间为90 min时,氨氮去除率为99.37%,去除1 kg氨氮的能耗和阳极效率为500 kW·h和 2.68 h·m2·A,瞬时电流效率(ICE)为0.28.表明电解氧化含氨氮废水具有较好的应用前景.  相似文献   

13.
为解决稀土、化肥工业中NH4Cl废水难以处理,危害较大的问题,针对广东某厂处理碱性氯化铜蚀刻液废水产生大量NH4Cl的实际废液,提出用电解法处理NH4Cl废液并对最优实验条件进行探究。发现采用阴离子交换膜将电解槽分隔为两极室可防止Cl2与NH4+接触产生易爆炸的NCl3,保证操作安全,且能有效分离阳极产生的Cl2和阴极产生的H2,便于产物收集。在此基础上,通过探究阳极室电解质种类及浓度、阴极室NH4Cl溶液浓度、电解时间对处理效果的影响,得到最佳实验条件为向阳极室加入20 mL浓度为5 g/L的NaCl溶液,向阴极室加入相同体积浓度为100 g/L的NH4Cl溶液,在0.3 A恒电流下电解3 h。在此条件下,反应器中93%的Cl-转化为Cl2和NaClO。该厂每天处理15 t NH4Cl废液,可为企业创收至少1950元。该双室隔膜电解法在有效去除NH4Cl废水中Cl-的同时能够产生NH2·H2O、Cl2和可用于消毒的NaClO,具有装置简单,去除率高的优势,是速率可控、清洁高效的处理技术。  相似文献   

14.
微生物电解系统生物阴极的硫酸盐还原特性研究   总被引:1,自引:1,他引:0  
针对传统硫酸盐生物还原方法中供氢体系能耗大和氢气利用率低的特点,构建双极室微生物电解系统(microbial electrolysis system,MES),研究了微生物利用阴极作为电子供体去除废水中硫酸盐及电子利用的特性.外加电压为0.8 V时,MES生物阴极在36 h内SO2-4平均去除量为109.8 mg·L-1,平均还原速率可达73.2 mg·(L·d)-1.运行时MES的最高电流密度为50~60 A·m-3,电子回收率为(43.3±10.7)%,约90%的电子被用于还原SO2-4.微生物利用MES阴极产生的H2作为电子供体还原SO2-4,主要还原产物为溶解态的S2-和气态的H2S,还原过程主要发生在前12 h.对MES施加不同外加电压的实验显示,外加电压为0.8 V时的SO2-4去除率和电荷量都比0.4 V时高;但0.4 V情形下MES的电子回收率可达到70%,且周期结束时阴极H2低于检出限,推测微生物可以直接利用阴极的电子从而提高了能量效率.实验结果最终表明,微生物可利用MES的阴极进行代谢去除废水中的SO2-4,阳极微生物产生电子降低了系统能耗,这为含硫酸盐废水的高效低耗处理提供了新的研究思路.  相似文献   

15.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

16.
研究采用扩散渗析法回收草浆黑液中的氢氧化钠,分别采用了离子交换膜和上海交通大学高分子研究所提供的疏水氟膜、亲水氟膜对草浆黑液进行处理。单位膜面积单位体积黑液下阴极室总碱量的增加用R表示。三种膜的R值分别为2.17×10-7mol/(mL·cm2)、9.20×10-8mol/(mL·cm2)、4.39×10-7mol/(mL·cm2)。可见亲水氟膜的扩散渗析效果最好。实验对原黑液及经亲水氟膜扩散渗析得到的稀碱液进行了质谱分析,结果显示只有一部分小分子有机物转移到蒸馏水一侧。从亲水氟膜处理前后的扫描电镜图可以看出亲水氟膜只有较轻微的污染。可见亲水氟膜有最好的扩散渗析效果和较好的使用寿命。  相似文献   

17.
文章采用RuO2-Ti板作为阳极,不锈钢板为阴极,研究了pH值、电解质种类及浓度、电压、电解时间与通电方式对酸性蒽醌绿2Ж模拟染料废水电催化氧化效果,结果表明处理酸性蒽醌绿2Ж模拟染料废水的最佳电催化氧化条件为槽电压10V、初始pH值为4、NaCl浓度为2.0g/L;在此条件下连续电解50min,COD去除率和脱色率分别为61.46%和83.14%。文章首次提出脉冲电催化氧化方式,研究表明脉冲电催化氧化可以明显提高能量效率和电流效率,降低处理成本。  相似文献   

18.
光/电/化学催化降解水中二甲基甲酰胺的反应特性   总被引:1,自引:1,他引:0  
设计了以负载型TiO2薄膜电极为阳极,以高纯多孔石墨为阴极,以饱和甘汞电极为参比电极的光/电/化学催化反应器,对二甲基甲酰胺(DMF)溶液进行降解. TiO2/Ti薄膜电极能对阳极槽中的DMF进行降解;同时,阴极槽中产生的过氧化氢(H2O2)可与亚铁离子形成Fenton催化体系,对DMF溶液也具有良好的降解作用. 结果表明,在以0.02 mol/L的Na2SO4和0.01 mol/L的FeSO4混合溶液作为支持电解质,初始pH为3.5,阴极电位(-Ec)为0.66 V,曝气强度为1.5 L/min和反应时间为60 min等的条件下,阳极槽和阴极槽中DMF的去除率分别达到85.10%和82.95%.   相似文献   

19.
TiO2纳米孔阵列光催化废水燃料电池的性能研究   总被引:1,自引:0,他引:1  
以模拟有机废水和实际有机废水为研究对象,以TiO2纳米孔阵列电极作光阳极,金属铂黑做阴极,设计了一种光催化废水燃料电池(PFC),用于有机废水处理和废水有机物化学能的综合利用.论文考查了不同实验条件下组成的电池体系的性能,表明基于TiO2纳米孔阵列光阳极的光催化废水燃料电池既能处理废水又能够表现出良好的电池性能,如以0.05mol/L乙酸为底物的光催化废水燃料电池,其开路电压1.16V,短路电流1.28mA/cm2,最大输出功率密度0.28mW/cm2.  相似文献   

20.
实验构建沉积型微生物燃料电池(sediment microbial fuel cell,SMFC),以有机废水为阳极底物,以活性污泥中的混合菌为阳极接种微生物,以含铜废水为阴极液,探讨SMFC对产电性能及废水处理的影响规律。结果表明:当阴极液Cu SO4浓度为3 000 mg/L时,SMFC的产电性能最优,功率密度最大为81.7 m W/m2,电流密度最大为980.0 m A/m2,优于浓度为1 000 mg/L和5 000 mg/L时的SMFC的产电性能。SMFC能有效处理有机废水和含铜废水,SMFC对有机废水COD去除率最高可达74.3%;SMFC对Cu2+的去除率最高可达到96.6%。SMFC可回收铜,阴极板上的沉积物经XRD检测,为Cu2O和单质铜的混合物。利用扫描电镜观察其表面形貌主要为片状和树枝状,铜粉的平均粒径为2.1μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号