首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 578 毫秒
1.
为了解HEPA(high efficiency particle air filter,高效空气过滤器)空气净化器在小学教室和寝室的净化效果,于2019年3—4月在北京市一所全寄宿小学开展了一项HEPA空气净化器的交叉干预研究.记录干预组、非干预组室内和室外PM2.5、PM10、PM1的浓度,计算空气净化器的净化率;采用多元线性回归模型探索净化效果的影响因素.结果表明:①空气净化器对PM2.5、PM10、PM1的净化率分别为41.3%〔Ql~Qu(下四分位数~上四分位数,下同):0~53.1%〕、40.7%(10.5%~46.2%)和34.9%(9.6%~40.3%),其中对PM2.5的净化率最高;寝室的净化率高于教室的净化率.②当室外PM2.5浓度为[115,150)μg/m3时对PM2.5的净化率最高,为52.83%(50.26%~56.13%),PM10和PM1亦有类似结果.③多元线性回归分析表明,室外PM2.5浓度 < 35 μg/m3时,开门通风和室内人员活动分别使室内PM2.5浓度下降3.73 μg/m3〔95%置信区间(95% CI):(0.60 μg/m3,6.86 μg/m3)〕和升高3.4 μg/m3(0.22 μg/m3,6.58 μg/m3);室外PM2.5浓度为[35,150)μg/m3时,空气净化器使室内PM2.5浓度下降33.36 μg/m3(16.47 μg/m3,50.25 μg/m3);室外PM2.5浓度≥150 μg/m3时,空气净化器和开门通风分别使室内PM2.5浓度下降48.87 μg/m3(25.62 μg/m3,72.12 μg/m3)和升高37.65 μg/m3(5.60 μg/m3,69.69 μg/m3).研究显示:空气净化器可同时降低室内PM2.5、PM10、PM1的浓度;当室外PM2.5浓度 < 35 μg/m3时,不需开启空气净化器;当室外PM2.5浓度为[35,150)μg/m3时,空气净化器有较好的净化效果,偶尔开窗通风不影响空气净化器的净化效果;当室外PM2.5浓度≥150 μg/m3时,开启空气净化器时应关闭门窗,以免影响其净化效果.   相似文献   

2.
室内人员活动是室内颗粒物再悬浮的重要因素,研究室内颗粒物再悬浮对评估室内空气质量有重要意义.以南开大学津南校区某公共教室为研究区域,通过现场试验研究了室内地面不同积尘负荷下,人员行走引起的PM2.5再悬浮浓度及其扩散速率.结果表明:①不同时间间隔内的室内地面总颗粒积尘负荷不同,时间间隔为3、7、15 d时,室内PM2.5积尘负荷分别为0.11、0.18、0.30 g/m2.②室内地面不同总颗粒积尘负荷下,在室内中心过道处行走时引起的PM2.5再悬浮浓度约1 min后达到最高值,PM2.5再悬浮浓度达到最高值的时间与地面不同总颗粒积尘负荷的关系不明显.③随着室内地面总颗粒积尘负荷的增加,人体行走引起的PM2.5再悬浮浓度也会增加.当室内PM2.5积尘负荷为0.30 g/m2时,行走路径中游坐姿1.1 m处与站姿呼吸平面1.5 m处的PM2.5再悬浮浓度平均值分别为3.03、2.68 μg/m3,约是室内PM2.5积尘负荷为0.18与0.11 g/m2时引起的PM2.5再悬浮浓度平均值的2~3倍.④利用颗粒物传输模型对PM2.5再悬浮进行量化分析发现,室内地面不同总颗粒积尘负荷的大小与PM2.5再悬浮分数无关,PM2.5再悬浮分数为2.2×10-8;室内PM2.5积尘负荷为0.11、0.18、0.30 g/m2时,行走引起的再悬浮PM2.5扩散速率分别为7.62×10-11、1.25×10-10、2.08×10-10 kg/s.研究显示,地面积尘负荷的大小会影响人体行走时颗粒物的扩散速率与室内PM2.5浓度.   相似文献   

3.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   

4.
天津市某社区老年人PM2.5暴露痕量元素健康风险评估   总被引:1,自引:0,他引:1  
为研究PM2.5暴露特征,对天津市某社区101名老年人(平均年龄67岁)夏季(2011年6月13日—7月2日)和冬季(2011年11月30日—12月12日)的PM2.5暴露水平进行了监测,并分析了PM2.5载带痕量元素的含量及其健康风险. 结果表明,研究对象夏、冬两季PM2.5个体暴露浓度分别为(124.2±75.2)、(170.8±126.6)μg/m3,室内暴露浓度分别为(120.0±48.9)、(164.9±125.7)μg/m3,环境暴露浓度分别为(98.6±33.3)、(140.0±87.7)μg/m3. 10种痕量元素中,ρ(Zn)最高,夏季为324.18~345.65ng/m3,占痕量元素总质量浓度的37%以上;冬季为148.36~362.00ng/m3,占痕量元素总质量浓度的35%以上. V、Cr、Mn、Cu、Zn和Pb的非致癌风险值均小于1,理论风险较小;但其中Cr和Mn风险值均超过0.1〔HQ(风险系数)分别为0.882和0.306〕,对于属于易感人群的老年人群体,仍有可能对其身体健康产生危害,需引起重视;As、Cd和总体致癌风险均超过10-6,对人体健康的危害不容忽视.   相似文献   

5.
为探讨以细颗粒物(PM2.5)持续高浓度暴露为特征的大气污染事件对于人群因病入院的急性影响,收集2013—2018年北京市大气PM2.5浓度、气象因素数据和人群因病入院数据,以PM2.5浓度〔75.0 μg/m3、150.0 μg/m3、第95百分位数(205.8 μg/m3)〕和持续时间(≥2 d、≥3 d)联合定义6种持续高暴露情景,采用基于quasi-Poisson回归的广义相加模型开展时间序列分析,获得不同情景下PM2.5对人群因病入院的急性影响.结果表明:①对于全人群研究发现,相较于非持续高暴露情景,持续2 d及以上的重污染(PM2.5浓度>150.0 μg/m3)情景引起非意外总疾病和心脑血管系统疾病的发病风险均显著增加,增幅分别为5.0%(95% CI,1.2%~9.0%)和5.6%(95% CI,1.8%~9.5%).②亚组人群分层分析发现,持续2 d及以上的重污染情景下,男性、女性、0~64岁、65~74岁、75岁及以上等亚组人群的非意外总疾病和心脑血管系统疾病的发病风险均显著增加;当出现极端PM2.5暴露浓度(>205.8 μg/m3)且持续3 d以及上时,女性和0~64岁、65~74岁人群的非意外总疾病和心脑血管系统疾病的发病风险均显著增加.③因呼吸系统疾病入院分析发现,仅在PM2.5浓度>150 μg/m3且持续时间≥2 d的情景下,观察到0~64岁人群的发病风险显著增加,增幅为3.4%(95% CI,0.2%~6.6%).研究显示,以PM2.5持续高暴露为特征的大气污染事件对人群因病入院有显著影响.   相似文献   

6.
为探讨曹妃甸采暖期和非采暖期PM2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月—2018年10月采集98份PM2.5样品.利用重量法测定空气中PM2.5浓度,使用电感耦合等离子体质谱仪分析PM2.5中4种重金属元素(Cr、Pb、As和Cd)的浓度;采用Wilcoxon Mann-Whitney U检验比较采暖期与非采暖期,以及PM2.5超标日与非超标日各元素含量的差异,利用Kruskal-Wallis H检验法比较不同PM2.5浓度分级下4种金属元素浓度差异,用PMF(正定矩阵因子分解)模型对4种重金属元素的来源及贡献率进行解析,并用美国环境保护局推荐的人体暴露健康风险评价模型进行健康风险评估.结果表明:①曹妃甸采暖期PM2.5及Pb、As和Cd浓度均高于非采暖期,而Cr浓度略低于非采暖期.②PM2.5超标日Pb、As和Cd浓度均高于非超标日,不同PM2.5浓度级别下Pb、As和Cd浓度有所差异,且Pb、As和Cd浓度随PM2.5浓度的增加而增加.③PMF模型源解析表明,燃煤源及交通源是曹妃甸采暖期PM2.5金属元素主要来源,二者贡献率分别为50.4%和31.7%;工业源及交通源是非采暖期PM2.5金属元素的主要来源,二者贡献率分别为47.4%和37.0%.④健康风险评价结果表明,采暖期和非采暖期4种重金属元素的非致癌风险值均小于1.采暖期3种致癌性重金属(Cr、As和Cd)对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平(1×10-6);非采暖期Cr和As对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平;重金属非致癌风险(Cr、Pb、As和Cd)和致癌风险(Cr、As和Cd)指数高低均呈成年男性>成年女性>儿童青少年的特征.研究显示,在采暖期和非采暖期曹妃甸PM2.5中Pb、As和Cd浓度随PM2.5浓度的增加而增加,燃煤源和工业源是其主要来源,Cr、As和Cd对人群存在一定的致癌风险.   相似文献   

7.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

8.
采用便携式PM2.5采样仪于2010年10—11月对典型工业源——某钢铁厂下风向某住宅区室内、外的ρ(PM2.5)进行同步监测,同时对该区域居民每日时间-活动模式进行问卷调查,以评价居民住宅区内PM2.5潜在暴露剂量和暴露浓度(以ρ计)及探讨其影响因素. 结果表明:该钢铁厂下风向居民单位体质量、个体的住宅区内PM2.5潜在暴露剂量分别为36.1 μg/(kg·d)、960.8 μg/d,日均暴露浓度为120.1 μg/m3. 影响居民个体住宅区内PM2.5潜在暴露剂量的因素依次为工作日/周末>暴露浓度>文化程度;影响居民单位体质量住宅区内PM2.5潜在暴露剂量的因素依次为体质量>年龄>文化程度>工作日/周末>暴露浓度;性别与二者均没有显著相关关系.   相似文献   

9.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

10.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

11.
于2011年夏季(6月13日—7月2日)和冬季(11月30日—12月12日)在天津市某老年社区采集室内与老年人个体暴露PM2.5样品,分析二者的质量浓度及化学组分特征. 结果表明:夏、冬季室内ρ(PM2.5)分别为(138±103)和(173±136)μg/m3,二者差异显著(P<0.05);冬季室内ρ(PM2.5)、ρ(SO42-)和ρ(OC)显著高于夏季(P<0.05),初步推断是由于冬季燃煤取暖排放的大量颗粒物渗透进入室内所致;冬季室内源(如清扫和吸烟)对某些室内PM2.5组分(Al、Ca和Cd)的贡献较夏季显著. 对个体暴露与室内ρ(PM2.5)的相关性分析发现,二者在夏、冬季均显著相关(P<0.05). 在受试老年人时间活动模式基础上,采用COD(分歧系数)评估室内和个体暴露PM2.5化学组成的相似度,结果显示,室内与个体暴露PM2.5的COD在夏、冬季分别为0.34±0.10和0.37±0.12;冬季受试老年人在交通微环境所处时间较长,致使COD大于0.5的样本数所占比例较夏季高. 室内和老年人个体暴露PM2.5的ρ(OC)/ρ(EC)在夏、冬季均相近,说明二者的碳组分来源相似.   相似文献   

12.
2011年11─12月使用颗粒物个体采样泵对天津42名儿童(9~12岁)的PM2.5暴露进行了研究,分别采集了冬季儿童PM2.5个体暴露和家庭室内暴露的滤膜样品. 使用ICP-MS/OES方法分析了室内暴露和个体暴露PM2.5载荷的元素. 结果表明:天津儿童冬季PM2.5个体暴露浓度(以ρ计)平均值为(129.3±66.6)μg/m3,室内暴露浓度平均值为(114.0±61.7)μg/m3. 个体暴露和室内暴露各元素质量浓度之和分别占ρ(PM2.5)的19.4%和17.1%. 相关分析指出,PM2.5室内暴露浓度和个体暴露浓度在0.01水平上显著相关. 回归分析表明,大多数元素的个体暴露浓度与室内暴露浓度呈正相关. 由EF(富集因子)分析可知,Zn、Pb、Cu、Cr、Ni、Sn、As、Sb、Cd、Tl、Bi、W、Mo在个体暴露和室内暴露样品中明显富集. 由主成分分析可知,天津儿童冬季PM2.5室内暴露来源可能为燃煤和机动车尾气的混合源、燃油飞灰、土壤尘、建筑尘;而个体暴露来源除上述人为源外,还包括工业尘.   相似文献   

13.
济南市大气颗粒物背景值确定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
城市大气颗粒物背景值的确定能够为制订城市大气颗粒物污染防治目标提供重要基础支撑,探索大气颗粒物背景值确定方法对于大气污染防治具有重要意义.以济南市清洁对照点跑马岭监测数据为基础,直接采用概率密度法计算得到的ρ(PM10)和ρ(PM2.5)背景值范围分别是100~110和40~50 μg/m3.综合应用空气质量模型模拟法和概率密度法,提出基于数值模拟的城市大气颗粒物环境背景值确定方法,并在此基础上确定了济南市大气颗粒物背景值.结果表明:济南市ρ(PM10)和ρ(PM2.5)背景值范围分别是30~35和15~20 μg/m3,其中ρ(PM10)环境背景值秋季(40~45 μg/m3)最高、夏季(25~30 μg/m3)最低;ρ(PM2.5)环境背景值秋季(25~30 μg/m3)最高、冬季(10~15 μg/m3)最低.研究显示,基于数值模拟计算得到的颗粒物背景值明显低于直接采用概率密度法得到的结果,表明跑马岭受人为因素影响明显,监测结果已不能完全代表济南市大气颗粒物背景值水平;而数值模拟法可以完全剔除了人为源的贡献,计算得到较为准确的ρ(PM10)和ρ(PM2.5)背景值.   相似文献   

14.
秋季嘉兴PM2.5质量浓度特征分析   总被引:3,自引:3,他引:0  
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

15.
2007—2014年北京地区PM2.5质量浓度变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为更好地解析北京地区ρ(PM2.5)的长期变化特征及气流轨迹聚类分析结果,对2007年8月—2014年7月在中国环境科学研究院实测的ρ(PM2.5)数据进行了统计分析,分析其年际、季节和月际变化特征;通过计算PM2.5的AQI分指数,分析了污染等级的时间变化特征;结合后向气流轨迹,对ρ(PM2.5)年际、季节变化与气团来源的关系进行了分析.结果表明:北京地区2008—2013年ρ(PM2.5)年均值分别为111.5、95.8、94.8、80.5、75.2、81.3 μg/m3,整体呈逐年下降趋势,但污染水平依然较高;ρ(PM2.5)由高到低的季节次序为秋季、冬季、春季、夏季,平均值分别为111.6、94.8、77.2、70.5 μg/m3,PM2.5重污染时段主要出现在秋冬季节,并且冬季ρ(PM2.5)近年来逐渐呈上升趋势;ρ(PM2.5)月均值呈单峰型变化,11月最高(为125.3 μg/m3),7月最低(为76.4 μg/m3);轨迹聚类分析发现,途经山西省北部和河北省南部的气流轨迹中ρ(PM2.5)较高,而来自北方及西北方向的气团相对较清洁,ρ(PM2.5)较低.北京地区近些年实施的大气污染减排措施对于控制PM2.5污染取得了一定效果,但针对秋冬季节重污染过程的控制力度仍需要加强,同时也要注意区域污染传输对北京地区ρ(PM2.5)的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号