首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
纳米TiO2光催化-SBR联合工艺处理制药废水   总被引:6,自引:1,他引:6  
采用偶联剂法将纳米TiO2附着于聚丙烯多面小球上,以"纳米TiO2光催化-SBR"联合工艺对实际制药废水进行了处理.在光催化降解阶段,以催化剂添加量、光照时间、pH值、H2O2使用量为因素进行正交实验,所得的最佳工况如下:催化剂添加量为54.8mg·L-1 (400个小球),光照时间为4h,pH值为5.0,H2O2使用量为0.5mg·L-1;在SBR处理阶段,沉淀时间为1h,曝气时间为10h,曝气强度为1.25m3·h-1,水力停留时间为26h.在以上工况条件下,联合工艺对CODCr去除率可达到87.66%,BOD5去除率可达到88.59%,SS去除率可达到61.09%,pH值从5 00上升到7.67.可见,运用联合工艺对制药废水进行处理是可行的.  相似文献   

2.
纳米TiO2光催化-SBR工艺处理印染废水的研究   总被引:2,自引:0,他引:2  
徐高田  校华  曾旭  徐静 《环境科学学报》2007,27(9):1444-1450
采用纳米"TiO2光催化-SBR"联合工艺对印染废水进行处理.实验所用装置为自行设计的"TiO2光催化-SBR"装置,利用偶联剂法将纳米TiO2附着于聚丙烯多面小球表面作为催化剂.光催化降解阶段以催化剂使用量、pH值和溶解氧(DO)为因素进行正交实验,最佳处理工况为1000个催化剂填料、pH值为8.0、溶解氧浓度为4.0mg·L-1;在SBR处理阶段主要考察反应器曝气时间以及沉淀时间对处理效果的影响,其最佳曝气时间和沉淀时间分别为2.5h、1h.实验结果表明,最终出水的色度、CODCr和BOD5去除率分别为90%、85%和94%.  相似文献   

3.
乙醛废水处理工程实例   总被引:2,自引:2,他引:2  
某化工厂以酒精氧化法制得乙醛,该厂原有一套污水处理设施,但系统出水难以达标。经改造后,该废水经过冷却到35~39℃、加碱中和至pH值为7左右,进入内循环厌氧反应器(MIC)处理,在厌氧进水为ρ(CODCr)约3200mg·L-1,HRT为24h时,CODCr去除率为94%,出水进入推流式好氧池,采用微孔曝气器曝气,HRT为36h,好氧出水ρ(CODCr)<100mg·L-1。  相似文献   

4.
瓷厂污水中的污染物主要以有机物为主,可生化性较好,易于用生物法处理.采用曝气生物滤池(BIOFOR)工艺处理瓷厂污水.其污水水质:ρ(CODCr))为400mg·L-1;ρ(BOD5)为200 mg·L-1;ρ(NH3-N)为35mg·L-1;ρ(SS)为300 mg·L-1.运行结果表明,该工艺处理效率高、操作简单、运行费用低、占地面积小,出水水质达到了《污水综合排放标准》(GB 8978-1996)一级排放标准.  相似文献   

5.
膜序批式生物反应器脱氮性能研究   总被引:5,自引:3,他引:2  
张胜  张铭川  徐立荣  竺建荣  刘鸿亮 《环境科学》2008,29(10):2798-2803
采用厌-好氧交替膜序批式反应器,实验室人工合成配水,连续运行300 d,对反应器脱氮性能进行了研究.结果表明,污泥浓度达到18 g·L-1时,污泥粒径大小在100μm以上的占96%,污泥出现颗粒化.FISH-CLSM分析AOB及NOB的群落空间分布表明它们在污泥中大量存在.NH4 -N进水50 mg·L-1左右时出水在1 mg·L-1以下,硝化反应在180~210 min就可以完成.曝气强度与硝化反应速率密切相关,曝气强度为100 m3·(m2·h)-1时,NH4 -N降解速率最佳达24.25 mg·(L·h)-1,系统硝化性能稳定.影响系统脱氮的主要因素是反硝化速率,曝气强度为69 m3(m2·h)-1时,对NO3--N的利用率为10.98 mg·(L·h)-1,出水NO3--N浓度为4.4 mg·L-1,滞留在厌氧段的浓度3.5 mg·L-1为最低,反硝化效果最好.曝气过量或不足时反硝化速率都低.在保证系统处理能力的同时,大的交换比0.35有利于系统脱氮运行.C/N比为2时,反硝化速率最高,>2时出现NO2--N的积累.  相似文献   

6.
蔡立根 《环境科技》2007,20(2):45-47
以某生产有机颜料厂家为例,介绍了EGSB TCBS处理工艺.当废水中CODCr质量浓度为7 000~8 000mg·L-1,NH3-N质量浓度为200~300 mg·L-1,SS的质量浓度为1 000~2 000 mg·L-1时,采用该工艺处理后,出水ρ(CODCr)<1 000 mg·L-1,ρ(NH3-N)<30 mg·L-1,ρ(SS)<500 mg·L-1.表明EGSB TCBS工艺适应于有机颜料废水的处理,且工艺运行便利,剩余污泥量小.  相似文献   

7.
采用厌氧-好氧序列间歇反应器-混凝沉淀组合工艺,处理碱法草浆造纸中段废水。结果表明,经8.0h厌氧搅拌处理和5.0h好氧曝气处理,进水CODcr为729.1-2239mg/L,出水CODCr小于550mg/L,CODCr去除率在66.2%-76.3%之间,再经混凝沉淀处理,出水CODCr小于200mg/L,色度小于50倍,满足国家造纸工业水污染物排放标准中的二级标准。  相似文献   

8.
序批式人工湿地冬季低温脱氮的效能研究   总被引:6,自引:2,他引:4  
周健  王继欣  张勤  张智  潘凡 《环境科学学报》2007,27(10):1652-1656
针对目前连续流人工湿地脱氮效率低、易堵塞及冬季效能下降的问题,提出了采用新型间歇流序批式人工湿地处理小城镇污水的方案,研究探讨了两级序批式人工湿地在冬季低温条件下,停留时间及排空闲置时间对脱氮效能的影响.试验结果表明,在冬季低温5~10 ℃、每级序批式湿地运行工况为瞬时进水-反应24h-瞬时排水-排空闲置12h、氮负荷为1.92g·m-2·d-1、进水COD、NH 4-N和TN浓度分别为143mg·L-1、27.0mg·L-1和32.0mg·L-1时,出水COD、NH4 -N和TN浓度分别为27mg·L-1、3.9mg·L-1和16.5mg·L-1,COD、NH4 -N和TN的去除率分别为81.12%、85.56%和48.44%.  相似文献   

9.
荧光增白剂生产废水不同预处理方法的比较   总被引:5,自引:0,他引:5       下载免费PDF全文
采用Fenton试剂氧化、O3氧化、曝气铁炭微电解3种方法对荧光增白剂生产废水进行了处理,考察了不同影响因素对3种处理方法处理效果的影响.结果表明,在H2O2投加量为0.13 mol/L、H2O2与Fe2+的物质的量比为20、pH值为5.0、反应时间为1.0h时, Fenton试剂氧化处理效果最好,CODCr去除率达到39.9%, BOD5/CODCr提高到0.51.在反应时间为70min(O3通入量为2.51 g/L)、pH值为9.2时,O3氧化处理效果较好,CODCr去除率达到36.7%,BOD5/CODCr提高到0.47.在铁炭质量比为1、反应时间为2.0h、pH值为2.5时,曝气铁炭微电解效果最好,CODCr去除率达到57.1%,BOD5/CODCr提高到0.45.3种预处理方法均可有效降解荧光增白剂生产废水中的有机物并且提高废水的可生化性,其中曝气铁炭微电解的效果最好,处理成本最低,可以应用于荧光增白剂生产废水的处理中.  相似文献   

10.
SBR无厌氧段实现生物除磷   总被引:6,自引:2,他引:4  
研究了SBR在模拟城市生活污水处理中的除磷效果.结果表明, SBR在进水后未经过传统除磷理论认为所必须的厌氧段而直接好氧曝气,废水中磷的浓度仍下降较快.在曝气时间为4h,进水COD浓度为400mg·L-1左右,反应过程中pH值7.0±0.2时,进水中TP浓度由15-20mg·L-1降到1mg·L-1以下,磷的去除效率达到90%以上.反应过程中传统的储能物质多β-羟基烷酸盐(PHA)基本保持不变且含量较低(PHA浓度在5mg·L-l左右),聚合磷酸盐(聚磷)在4h好氧阶段呈先下降后上升的趋势(好氧开始时聚磷含量为83.034mg· g-1,好氧1h时污泥中聚磷含量为79.980mg·g-1,好氧结束时聚磷含量为83.086mg·g-1),在0.5h沉淀和3.5h静置期内聚磷没有明显的水解现象.此研究表明在无厌氧段、无PHA合成而直接好氧曝气,聚磷菌亦能将废水中磷酸盐合成聚磷,通过排除富磷污泥而达到除磷目的,这和传统的理论与研究有所区别.  相似文献   

11.
采用自主研发的上流式多级厌氧反应器(UMAR)处理糖蜜酒精废水,研究UMAR的运行特性。研究结果表明:UMAR在水力停留时间为7.1h,进水ρ(COD)为10000mg/L,有机负荷为17.6~33.8kg/(m3.d)时COD去除率均高于75%,最高可达81%。UMAR反应器对进水负荷的冲击有良好耐受能力,运行稳定。  相似文献   

12.
EGSB反应器中颗粒污泥床工作状况及污泥性质研究   总被引:14,自引:1,他引:13  
研究了处理低浓度有机废水的EGSB反应器中颗粒污泥床状况及颗粒污泥的性质,结果表明,液体表面上升流速(Vup)是影响EGSB反应器效能的重要参数,当进水COD为600~800mg/L时,较佳的液体表面上升流速(Vup)为1.5~4.5m/h,在此条件下,EGSB反应器COD负荷为24.5~25.7kg/(m3·d),COD去除率大于85%;同时还发现,经过一定时间的运行后,反应器中颗粒污泥粒径分布、沉降速度、胞外聚合物(ECP)等性质都发生了明显变化,颗粒污泥的平均粒径由0.85mm增加到1.78mm,平均沉降速度由41.2m/h提高到83.2m/h,而胞外聚合物(ECP)的含量则由接种污泥的32.5mg/g增加到57.8mg/g。   相似文献   

13.
SBBR同步硝化反硝化处理生活污水的影响因素   总被引:38,自引:1,他引:38  
序批式生物膜反应器SBBR采用塑料鲍尔环填料,在有氧情况下用于处理实际生活污水.该反应器能很好地创造缺氧微环境,载体生物膜具有吸附储碳能力,出现了良好的同步硝化和反硝化现象.反应器中溶解氧浓度在较大的范围内(0.8~4.0 mg·L-1)能有效地实现同步硝化和反硝化.当溶解氧浓度大于4.0 mg·L-1后,TN容积去除率大幅下降,出水TN大幅上升.增加载体生物膜厚度有利于同步硝化和反硝化.进水浓度基本不影响脱氮的效率,但出水TN随进水浓度增加而升高,建议原水浓度高时可增加后续脱氮处理或减少进水量来满足出水要求.优化运行方法和参数后,SBBR连续运行的TN去除率可稳定在74%~82%.  相似文献   

14.
水解-交替脉冲曝气工艺处理城市污水研究   总被引:1,自引:1,他引:0  
采用淹没式膜法水解-交替脉冲曝气系统对城市污水的处理效能进行研究,讨论了装置进水COD浓度变化对生活污水处理效果的影响、处理工艺沿程COD、NH3-N浓度变化状况、NH3-N的去除、水解对COD去除效果的影响以及进水COD/N比与反硝化的关系。研究表明,该系统能有效地去除COD和NH3-N。进水COD在450mg/L以下时,出水COD基本维持在60mg/L以下;进水NH3-N<50mg/L时,出水NH3-N<10mg/L。  相似文献   

15.
固定化硝化菌去除废水中氨氮工艺的研究   总被引:36,自引:2,他引:34  
采用聚乙烯醇-硼酸包埋固定化法,选用PVA为包埋载体,粉末活性炭作为无机载体,包埋固定A/O生物脱氮系统中的再经驯化过的硝化污泥,制成固定化硝化菌颗粒。  相似文献   

16.
对比研究了硅藻土和硅藻土基纳米二氧化钛光催化剂对甲醛的吸附降解特点.通过改变反应器内甲醛的初始浓度、反应温度、光照强度和相对湿度,研究了涂覆量为62.5 g·m-2的硅藻土基纳米TiO2光催化剂对甲醛气体的降解效果.研究结果表明,硅藻土只对甲醛有一定的吸附作用,而硅藻土基纳米TiO2对甲醛具有持续的吸附和降解作用.反应器内甲醛初始浓度越高,降解时间越长;初始浓度为6.0×10-3 mg·L-1的甲醛气体,经过150 h降解率才能达到99%以上,而初始浓度为2.0×10-3 mg·L-1和4.0×10-3 mg·L-1的甲醛气体分别在14 h和32 h内就可以达到相同的降解率.反应温度越高,硅藻土基纳米TiO2降解甲醛所需要时间越短;15 ℃时将初始浓度为2.0×10-3 mg·L-1的甲醛完全降解需要50 h,而45 ℃时仅需12 h.光照是硅藻土基纳米TiO2降解甲醛的直接动力,光照强度为0时,甲醛几乎不能被降解,只被硅藻土基纳米TiO2光催化剂吸附;在8100 lx的照度下,浓度为2.0×10-3 mg·L-1的甲醛在14 h内能被完全降解.环境相对湿度越大,该催化剂对甲醛的降解越彻底;相对湿度50%时, 硅藻土基纳米TiO2光催化剂14 h内能将2.0×10-3 mg·L-1的甲醛降解到3.72×10-5 mg·L-1,在相对湿度80%时,甲醛能被降解到1.0×10-5 mg·L-1.  相似文献   

17.
生物膜净化含苯废气的性能研究   总被引:3,自引:1,他引:3  
在生物法净化废气装置中生物膜是设备的主体和关键.研究以净化含苯废气的生物滴滤塔为对象,采用静态反应器对塔内生物膜的净化性能进行研究,探索其过程机理,为生物滴滤器的优化提供技术支持.结果表明,在生物滴滤器中单位体积生物膜的呼吸速率和苯去除速率都沿气流方向逐渐减小,但单位质量生物膜的苯去除速率却是塔中部高两边低.研究发现,当生物膜经过3d的闲置后,苯的消除能力提高了70%左右,但闲置时间超过5d后,生物净化性能开始下降.综合实验结果,推测在生物膜中同时存在苯的生物降解过程和生物储备能源的合成过程,在苯浓度越高的地方储备能源的量也越多,储备能源的存在降低了生物膜的净化能力但增强了生物膜的稳定性.  相似文献   

18.
SBR法处理含阴离子表面活性剂废水的研究   总被引:7,自引:0,他引:7  
以SBR法处理含阴离子表面活性剂废水。探讨了SBR系统处理废水的最佳条件及曝气时间、进水pH值、沉降时间、闲置时间、泥水比等因素对废水中LAS去除率的影响,并在单条件实验的基础上选取影响较大的因素进行了正交实验,取得了令人满意的处理效果。当废水中LAS含量为100mg/L时,曝气时间为4.5h,沉降时间为4h,闲置时间为5h,进水pH=7,进水为4h,其对废水中LAS去除率可以达到96%。  相似文献   

19.
两段活性污泥法处理味精废水的中试研究   总被引:1,自引:0,他引:1  
白晓慧 《环境工程》2001,19(1):26-27
采用两段活性污泥法处理味精废水 ,试验规模 0 5m3/h ,当进水CODCr浓度 16 80~ 70 30mg/L,NH3 N浓度 2 0 6~ 1999mg/L时 ,经石灰中和 ,空气吹脱对离交废水的预处理后 ,出水CODCr<10 0 0mg/L。试验中 ,兼氧池和一段好氧池污泥浓度保持在 6 0 0 0~ 80 0 0mg/L之间 ,二段好氧池保持在 40 0 0~ 6 0 0 0mg/L之间。生物处理总停留时间 5 0h。在离交废水预处理中 ,pH中和至 9 5~ 10 ,鼓气量在 10 0m3/h左右 ,水温加至 5 5℃左右 ,经 8h ,可将原水NH3 N从12 0 0 0mg/L左右 ,脱除 6 5 %以上 ,出水氨氮可达 40 0 0mg/L左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号