首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation models are used to aid the decision makers about water pollution control and management in river systems. However, uncertainty of model parameters affects the model predictions and hence the pollution control decision. Therefore, it often is necessary to identify the model parameters that significantly affect the model output uncertainty prior to or as a supplement to model application to water pollution control and planning problems. In this study, sensitivity analysis, as a tool for uncertainty analysis was carried out to assess the sensitivity of water quality to (a) model parameters (b) pollution abatement measures such as wastewater treatment, waste discharge and flow augmentation from upstream reservoir. In addition, sensitivity analysis for the “best practical solution” was carried out to help the decision makers in choosing an appropriate option. The Delhi stretch of the river Yamuna was considered as a case study. The QUAL2E model is used for water quality simulation. The results obtained indicate that parameters K 1 (deoxygenation constant) and K 3 (settling oxygen demand), which is the rate of biochemical decomposition of organic matter and rate of BOD removal by settling, respectively, are the most sensitive parameters for the considered river stretch. Different combinations of variations in K 1 and K 2 also revealed similar results for better understanding of inter-dependability of K 1 and K 2. Also, among the pollution abatement methods, the change (perturbation) in wastewater treatment level at primary, secondary, tertiary, and advanced has the greatest effect on the uncertainty of the simulated dissolved oxygen and biochemical oxygen demand concentrations.  相似文献   

2.
Environmental flows (Eflow, hereafter) are the flows to be maintained in the river for its healthy functioning and the sustenance and protection of aquatic ecosystems. Estimation of Eflow in any river stretch demands consideration of various factors such as flow regime, ecosystem, and health of river. However, most of the Eflow estimation studies have neglected the water quality factor. This study urges the need to consider water quality criterion in the estimation of Eflow and proposes a framework for estimating Eflow incorporating water quality variations under present and hypothetical future scenarios of climate change and pollution load. The proposed framework is applied on the polluted stretch of Yamuna River passing through Delhi, India. Required Eflow at various locations along the stretch are determined by considering possible variations in future water quantity and quality. Eflow values satisfying minimum quality requirements for different river water usage classes (classes A, B, C, and D as specified by the Central Pollution Control Board, India) are found to be between 700 and 800 m3/s. The estimated Eflow values may aid policymakers to derive upstream storage-release policies or effluent restrictions. Generalized nature of this framework will help its implementation on any river systems.  相似文献   

3.
Various physico-chemical characteristics of the River Yamuna flowing in Haryana through Delhi were studied in the summer (April 1998) and winter (Jan.-Feb. 1999). Ecological parameters like dissolved oxygen (DO), pH, nitrate (NO3-), sulfate (SO4(2-)), and phosphate (PO4(3-)), were analyzed and compared with standard permissible limits to assess the best-designated use of the river water for various purposes. The river in Delhi upstream was of better quality whereas the Delhi downstream stretch was polluted as indicated by very low DO and high total dissolved solids (TDS), electric conductivity (EC), total hardness, Na+, K+, Cl-, F- and SO4(2-). The differences in various parameters were statistically significant (p < 0.01) when compared for the Delhi upstream and downstream stretches of the river, particularly in summer. DO and TDS were found to be two important parameters, which showed strong correlation with several other parameters and hence can serve as good indices of river water quality. The river tended to recover from the pollution stress after flowing through a distance of about 80 km downstream of Delhi.  相似文献   

4.
River Yamuna, like most of the major rivers of India, has become increasingly polluted over the years from both point and non-point sources, particularly in the urban sectors such as Delhi. Field studies, conducted in January, 1994 have investigated the impact of wastewater discharges from four major drains (Najafgarh, Power House, Barapula, Kalkaji) on the overbanks, floodplains and Eichhornia in River Yamuna in Delhi, with particular reference to elemental contamination. It is concluded that except for Cd and Co, overall mean soil concentrations along the full stretch of the river in Delhi are within the world background levels of uncontaminated soils. However, the wastewater discharges from the drains, with the exception of Barapula drain, generally increase the elemental concentrations of overbank soils downstream of the discharges. Eichhornia plants growing along the banks receiving wastewaters from the Najafgarh and Barapula drains are unhealthy and reduced in population which can be attributed to a combination of alkaline pH of the growth medium, metal toxicity and high BOD at the site receiving effluents from the Najafgarh drain, and alkaline pH, metal toxicity and the turbid conditions of water with fly ash particle deposition on the plant surfaces at the site receiving effluents from the Barapula drain. Generally, considering the entire stretch of the river in Delhi, the roots of these plants growing on the overbank soils are found to be accumulators of all elements except Co, Al and Fe, with Co uptake being minimal. There are marked differences in elemental uptake of the water hyacinths growing on the overbanks and floodplains of the river.  相似文献   

5.
Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd.  相似文献   

6.
Delhi has the highest cluster of small-scale industries (SSI) in India. There are generally less stringent rules for the treatment of waste in SSI due to less waste generation within each individual industry. This results in SSI disposing of their wastewater untreated into drains and subsequently into the river Yamuna, which is a major source of potable water in Delhi, thus posing a potential health and environmental risk to the people living in Delhi and downstream. To study the quantity, quality and distribution of heavy metals in liquid waste from industrial areas, wastewater, suspended materials and bed sediments were collected from industrial areas and from the river Yamuna in Delhi. This study has also focused on the efficiency of production processes in small-scale industries in India. Heavy metals such as Fe, Mn, Cu, Zn, Ni, Cr, Cd, Co and Pb were detected using a GBC 902 atomic absorption spectrometer. The concentration of heavy metals observed was as follows: Fe 2-212, Mn 0.3-39, Cu 0.2-20, Zn 0.2-5, Ni 0.6-6, Cr 0.2-53, Cd 0.08-0.2, Co 0.013-0.55, Pb 0.3-0.7 mg L(-1) in wastewater; Fe 5842-78 000, Mn 585-10 889, Cu 206-7201, Zn 406-9000, Ni 22-3621, Cr 178-10 533, Co 17-114, Cd 13-141, Pb 67-50 171 mg kg(-1) in suspended material; and Fe 3000-84000, Mn 479-1230, Cu 378-8127, Zn 647-4010, Ni 164-1582, Cr 139-3281, Co 20-54, Cd 37-65, Pb 228-293 mg kg(-1) in bed residues. This indicates that SSI could be one of the point sources of metals pollution in the river system.  相似文献   

7.
A stream water quality model, QUAL2Kw, was calibrated and validated for the river Bagmati of Nepal. The model represented the field data quite well with some exceptions. The influences of various water quality management strategies have on DO concentrations were examined considering: (i) pollution loads modification; (ii) flow augmentation; (iii) local oxygenation. The study showed the local oxygenation is effective in raising DO levels. The combination of wastewater modification, flow augmentation and local oxygenation is necessary to ensure minimum DO concentrations. This reasonable modeling guarantees the use of QUAL2Kw for future river water quality policy options.  相似文献   

8.
A well known river hydrodynamic model RiverCAD has been used to simulate and visualize flood scenarios for different designated flood flows under complex riverbed geometry with several man made structures like bridges and barrages. The model applied successfully for the stretch of 23 km in the Yamuna floodplain of Delhi region from Wazirabad barrage in the upstream to Okhla barrage. Flood flows for various return periods namely once in 10, 25, 50 and 100 years were estimated based on recorded flow data for the period of 1963 to 2003 using standard flood frequency analysis techniques. The simulation results were compared and the model was calibrated with water surface elevation records of the previous floods at various barrage and bridge locations. Simulation results enabled prediction of maximum water levels, submergence scenarios and land availability under different designated flood flows for riverbed assessment, development and management.  相似文献   

9.
The river Hindon is one of the important tributaries of river Yamuna in western Uttar Pradesh (India) and carries pollution loads from various municipal and industrial units and surrounding agricultural areas. The main sources of pollution in the river include municipal wastes from Saharanpur, Muzaffarnagar and Ghaziabad urban areas and industrial effluents of sugar, pulp and paper, distilleries and other miscellaneous industries through tributaries as well as direct inputs. In this paper, chemical mass balance approach has been used to assess the contribution from non-point sources of pollution to the river. The river system has been divided into three stretches depending on the land use pattern. The contribution of point sources in the upper and lower stretches are 95 and 81% respectively of the total flow of the river while there is no point source input in the middle stretch. Mass balance calculations indicate that contribution of nitrate and phosphate from non-point sources amounts to 15.5 and 6.9% in the upper stretch and 13.1 and 16.6% in the lower stretch respectively. Observed differences in the load along the river may be attributed to uncharacterized sources of pollution due to agricultural activities, remobilization from or entrainment of contaminated bottom sediments, ground water contribution or a combination of these sources.  相似文献   

10.
Different water quality management alternatives, including conventional wastewater treatment, transportation of wastewater, flow augmentation, low-cost treatment with reuse, and wetlands, are evaluated by using a verified dissolved oxygen (DO) model for the Ravi River. Biokinetic rate coefficients of the Ravi River for both the carbonaceous and nitrogenous oxygen-demanding wastes are adjusted, keeping in view the type and level of wastewater treatment. The conventional activated sludge process with nitrification comes out to be the most expansive alternative to meet the DO standard of 4 mg/L. Additional treatment cost is required to maintain un-ionized ammonia levels <0.02 mg/L, which corresponds to achieving treatment levels of 5 mg/L of DO in the river. Under critical low-flow conditions (i.e., minimum average seven consecutive days) of 9.2 m3/s, a flow augmentation of 10 m3/s can reduce 30 % of the cost with conventional wastewater treatment. Transportation of wastewater from the city of Lahore is a cost-effective alternative with 2.5 times less cost than the conventional process. Waste stabilization ponds (WSP) technology is a low-cost solution with 3.5 times less cost as compared to the conventional process. Further reduction in pollution loads to the Ravi River can be achieved by reusing WSP effluents for irrigation in the near proximity of Lahore along the Ravi River. The study results show that, for highly polluted rivers with such extreme flow variations as in case of the Ravi River, meeting un-ionized ammonia standards can reduce the efforts required to develop carbonaceous biochemical oxygen demand-based waste load allocations.  相似文献   

11.
The study illustrates the utility of STREAM II as a modeling package to determine the pollution load due to organic matter in the River Yamuna during its course through the National Capital Territory that is Delhi, India. The study was done for a period from 1995–2005. Model simulates the dissolved oxygen and biochemical oxygen demand parameters in a two-dimensional fashion by performing the numerical solution to a set of differential equations representing aquatic life with the help of Crank–Nicholson finite difference method. The model was simulated and calibrated through the field water-quality primary data and the secondary data which were taken from Central Pollution Control Board. The main reasons for the high river pollution is increasing population of Delhi and other states, leading to generation of huge amounts of domestic sewage into the river Yamuna. The model gave a good agreement between calibrated and observed data, thus, actualizing the validity of the model. However, discrepancies noticed during model calibrations were attributed to the assumptions adopted in the model formulation and to lack of field data.  相似文献   

12.
Antibiotics consumption has increased worldwide, and their residues are frequently reported in aquatic environments. It is believed that antibiotics reach aquatic water bodies through sewage. Medicine consumed for healthcare practices are often released into sewage, and after sewage treatment plant, it reaches the receiving water bodies of lakes or rivers. In the present study, we determined the fate of some commonly used antibiotics in a sewage treatment plant (STP) located in Delhi and the environmental concentration of these antibiotics in the Yamuna River, which receives the sewage and industrial effluent of Delhi. There are many reports on antibiotics occurrences in STP and river water worldwide, but monitoring data from the Indian subcontinent is sparse. Samples were taken from a STP and from six sampling sites on the Yamuna River. Several antibiotics were tested for using offline solid-phase extraction followed by high-performance liquid chromatography equipped with photodiode array analysis. Recoveries varied from 25.5–108.8 %. Ampicillin had the maximum concentration in wastewater influents (104.2?±?98.11 μg l?1) and effluents (12.68?±?8.38 μg l?1). The fluoroquinolones and cephalosporins had the lower concentrations. Treatment efficiencies varied between 55 and 99 %. Significant amounts of antibiotics were discharged in effluents and were detected in the receiving water body. The concentration of antibiotics in the Yamuna River varied from not detected to 13.75 μg l?1 (ampicillin) for the compounds investigated.  相似文献   

13.
Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score–multiple linear regression (APCS–MLR) were combined to obtain a deeper understanding of temporal–spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal–spatial variations, respectively. Rotated PCA and receptor model (APCS–MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90 % sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.  相似文献   

14.
Yamuna, a prominent river of India covers an extensive area of 345,843 km(2) from Yamunotri glacier through six Indian states. Residues of organochlorine pesticides (OCPs) namely, isomers of HCH and endosulfan, DDT and its metabolites, aldrin, dieldrin, were analysed in water of river Yamuna along its 346 km stretch passing through Haryana-Delhi-Haryana and the canals originating from it. beta-HCH, p.p'-DDT, p.p'-DDE and p.p'-DDD had maximum traceability in test samples (95-100%) followed by gamma-HCH, alpha-HCH and o.p'-DDD (60-84%) and o.p'-DDT, delta-HCH and o.p'-DDE (7-30%) while aldrin, dieldrin, alpha and beta endosulfan remained below detection limits (BDL). The concentration of SigmaHCH and SigmaDDT at different sites of the river ranged between 12.76-593.49 ng/l (with a mean of 310.25 ng/l) and 66.17-722.94 ng/l (with a mean of 387.9 ng/l), respectively. In canals the values were found between 12.38-571.98 ng/l and 109.12-1572.22 ng/l for SigmaHCH and SigmaDDT, respectively. Water of Gurgaon canal and Western Yamuna canal contained maximum and minimum concentration, respectively both of SigmaHCH and SigmaDDT residues. Sources of these pesticides and suggested measures to check pesticide pollution of this major Indian river, keeping in view its vital link with life, are discussed in this paper.  相似文献   

15.
River water quality and pollution sources in the Pearl River Delta, China   总被引:1,自引:0,他引:1  
Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.  相似文献   

16.
Rapid urban development has led to a critical negative impact on water bodies flowing in and around urban areas. In the present study, 25 physiochemical and biological parameters have been studied on water samples collected from the entire section of a small river originating and ending within an urban area. This study envisaged to assess the water quality status of river body and explore probable sources of pollution in the river. Weighted arithmetic water quality index (WQI) was employed to evaluate the water quality status of the river. Multivariate statistical techniques namely cluster analysis (CA) and principal component analysis (PCA) were applied to differentiate the sources of variation in water quality and to determine the cause of pollution in the river. WQI values indicated high pollution levels in the studied water body, rendering it unsuitable for any practical purpose. Cluster analysis results showed that the river samples can be divided into four groups. Use of PCA identified four important factors describing the types of pollution in the river, namely (1) mineral and nutrient pollution, (2) heavy metal pollution, (3) organic pollution, and (4) fecal contamination. The deteriorating water quality of the river was demonstrated to originate from wide sources of anthropogenic activities, especially municipal sewage discharge from unplanned housing areas, wastewater discharge from small industrial units, livestock activities, and indiscriminate dumping of solid wastes in the river. Thus, the present study effectively demonstrates the use of WQI and multivariate statistical techniques for gaining simpler and meaningful information about the water quality of a lotic water body as well as to identify of the pollution sources.  相似文献   

17.
The Antuã River, located in northwestern Portugal, drains a region with a high population density and a strong economic dynamism. These factors, together with a lack of facilities for appropriate treatment of domestic and industrial sewage, are putting increasing pressure on water resources. In this context, the aim of the present study was to identify point sources of pollution and to assess the surface water quality in the Antuã basin by monitoring physicochemical variables. A total of 40 point sources of wastewater, including some with a high pollution load, were detected in the most populated and industrialized areas of the São João da Madeira and Oliveira de Azeméis municipalities. These sources explained the strong degradation of water quality observed in the upper and medium Antuã River and in one of its tributaries, where maxima of 49 mg l?1 for biochemical oxygen demand, 29 mg l?1 for Kjeldahl nitrogen and 3.7 mg l?1 for total phosphorus, were found after five surface water monitoring campaigns. Despite the relevance of pollution problems, a considerable water quality improvement, promoted by favourable reaeration conditions, was observed in the final stretch of the river, giving evidence of a great self-depuration capacity. However, the Antuã is a significant contributor of nutrients to the Ria de Aveiro, the coastal lagoon where the river meets the Atlantic Ocean.  相似文献   

18.
Delhi is one of the many megacities struggling with punishing levels of pollution from industrial, residential, and transportation sources. Over the years, pollution abatement in Delhi has become an important constituent of state policies. In the past one decade a lot of policies and regulations have been implemented which have had a noticeable effect on pollution levels. In this context, air quality models provide a powerful tool to study the impact of development plans on the expected air pollution levels and thus aid the regulating and planning authorities in decision-making process. In air quality modeling, emissions in the modeling domain at regular interval are one of the most important inputs. From the annual emission data of over a decade (1990–2000), emission inventory is prepared for the megacity Delhi. Four criteria pollutants namely, CO, SO2, PM, and NO x are considered and a gridded emission inventory over Delhi has been prepared taking into account land use pattern, population density, traffic density, industrial areas, etc. A top down approach is used for this purpose. Emission isopleths are drawn and annual emission patterns are discussed mainly for the years 1990, 1996 and 2000. Primary and secondary areas of emission hotspots are identified and emission variations discussed during the study period. Validation of estimated values is desired from the available data. There is a direct relationship of pollution levels and emission strength in a given area. Hence, an attempt has been made to validate the emission inventory for all criteria pollutants by analyzing emissions in various sampling zones with the ambient pollution levels. For validation purpose, the geographical region encompassing the study area (Delhi) has been divided into seven emission zones as per the air quality monitoring stations using Voronoi polygon concept. Dispersion modeling is also used for continuous elevated sources to have the contributing emissions at the ground level to facilitate validation. A good correlation between emission estimates and concentration has been found. Correlation coefficient of 0.82, 0.77, 0.58 and 0.68 for CO, SO2, PM and NO x respectively shows a reasonably satisfactory performance of the present estimates.  相似文献   

19.
The aim of this study was to evaluate the water quality of the Cértima River basin (Central Portugal). For that purpose, surface water samples were collected in March, May and July 2003, at 10 selected sampling sites, and were analysed for physicochemical parameters, namely temperature, conductivity, pH, total suspended solids, dissolved oxygen, biochemical oxygen demand (BOD5), Kjeldahl nitrogen and total phosphorus. Results revealed an acceptable water quality during the spring season. Maxima of 64 mg dm−3 for BOD5, 39 mg dm−3 for Kjeldahl nitrogen, and 5.2 mg dm−3 for total phosphorus, were recorded during summer, indicating a significant degradation of the water quality in a river stretch located downstream of the town of Mealhada. These values, which did not comply with the objectives of minimum quality for surface waters prescribed by the Portuguese legislation, were related to domestic wastewater discharges and runoff waters from a cattle farm. Besides their effects on the middle stretch of the river, these pollution sources were the most likely cause of the high nutrient load in downstream waters, and thus may have a major impact on the trophic status of Pateira de Fermentelos, a sensitive wetland area located in the lower Cértima basin.  相似文献   

20.
The hygienic quality of the water of the Kerava river, southern Finland, deteriorates occasionally. The purpose of the study was to design a real-time monitoring system that would inform the public using the river for recreational purposes about the changes in water quality. The system was constrained to consist of on-line sensing of water quality and quantity, and adjacent forecasting models. Four different system alternatives were analyzed and compared. The first alternative observes river flow in real-time; the second alternative also monitors water temperature, turbidity, pH, conductivity and dissolved oxygen. The data collected in this way are used to forecast Streptococcus and E. coli concentrations, using canonical correlation and regression analysis. The third configuration is a two-step procedure, where river flow is first predicted by an ARMAX model and the hygienic state is then based on the flow estimate, as in the first assemblage. The most expensive monitoring system, which at present is the least well-known, is to apply the Lidar system, where the hygienic status of the river quality is observed directly using laser technology, placing less emphasis on modeling. In this paper, the alternatives are formulated and a preliminary comparison is made, using the criteria of operational feasibility, prediction uncertainty, investment and maintenance costs, and suitability for in-situ monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号