首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 181 毫秒
1.
为探究约束系统在全承载客车正面碰撞事故中对乘客损伤的影响,利用有限元分析软件LSDYNA建立某大客车正面碰撞仿真模型,并开展整车50 km/h正面100%重叠碰撞固定刚性壁障试验;从车身变形、加速度曲线和乘员损伤等3方面验证仿真模型;基于已验证的仿真模型,开展不同座椅间距、车厢位置及安全带类型的乘员运动响应和损伤等综合分析与评价。研究结果表明:不同位置车身加速度波形整体趋势相似,但具体峰值和出现时刻存在差异;增大座椅间距和主动预紧安全带能够有效降低降低头部损伤值,而颈部损伤则随之增大;乘客胸部损伤值和大腿力受主动预紧安全带、座椅间距和车厢位置影响不大。  相似文献   

2.
为研究乘客在大客车正面碰撞事故中的损伤机理,建立某全承载大客车有限元模型,并通过试验验证有限元模型的仿真精度。基于验证模型对不同碰撞速度条件下大客车车身结构力学响应、生存空间、座椅固定件强度、乘员运动响应和损伤等进行综合分析及评价。结果表明:高速碰撞条件下,驾驶员生存空间容易被侵入,座椅固定件强度存在失效的风险;乘员头部、颈部和胸部的损伤值受碰撞速度、安全带类型和乘员位置影响较大;三点式安全带保护效果明显优于两点式安全带。  相似文献   

3.
为识别轿车正面偏置碰撞中后排左侧乘员的损伤特点,开展模拟研究。利用HyperMesh有限元软件,建立包含有限元轿车、可变形壁障及假人的基础模型1,并在基础模型1上为假人添加三点式安全带,建立模型2,在模型2基础上为假人创建侧气囊,建立模型3;采用Ls-Dyna软件求解计算,并应用HyperGraph软件分析不同重叠率偏置碰撞下假人的损伤情况;对比基础模型1、模型2、模型3仿真试验的假人损伤情况,分析不同约束系统对左后排假人的保护效能。结果表明:随着碰撞重叠率增大,左后排乘员头部和胸部的加速度峰值均相应减小;碰撞重叠率在试验范围内变化时,颈部所受合力的峰值波动较小;使用安全带能显著降低乘员的损伤;侧气囊对乘员胸部有保护作用。  相似文献   

4.
美国侧面碰撞规程下轿车变形侵入仿真研究   总被引:1,自引:1,他引:0  
为更好地分析汽车侧面碰撞过程中驾乘人员安全,根据美国联邦机动车安全法规FMVSS214碰撞要求,采用显式有限元分析软件LS-DYNA详细建立了某公司轿车有限元整车模型和可变形移动壁障有限元模型,研究了美国侧面碰撞规程下可变形移动壁障以54 km/h速度撞击轿车侧面的变形侵入过程仿真模拟和轿车侧面车门不同水平级的变形侵入对乘员损伤程度的影响。结果表明:有限元模拟结果与实车碰撞试验结果吻合较好,模型可信;轿车车门中部位置对驾乘人员损伤影响最大,乘员损伤AIS值接近3(严重损伤);参数加权平均变形侵入量能较好的反映车辆侧面碰撞下车身侧围的变形侵入情况。  相似文献   

5.
为提高校车乘员约束系统在正面碰撞中对儿童乘员的保护效果,提出一种新型主动式校车儿童安全气囊。运用多刚体动力学分析软件MADYMO建立包括地板、前后排座椅、安全带与第5百分位女性假人在内的校车乘员正面碰撞仿真模型,通过台车试验结果验证模型的准确性。在此基础上,建立主动式安全气囊模型,研究其对12岁和6岁乘员的保护效果。用正交试验方法,分析气囊设计参数,针对12岁乘员进行气囊优化。结果表明:头部气囊的厚度及排气孔大小对乘员伤害影响最大。与原始约束系统相比,经优化后的气囊使12岁乘员的头部、胸部和颈部伤害分别下降84.5%,19%和84.3%,同时加装气囊对6岁儿童也有一定的保护效果。  相似文献   

6.
为预防校车正面碰撞对儿童乘员的伤害,有必要分析和优化校车儿童乘员约束系统(CRS)参数。首先利用多刚体动力学分析软件(MADYMO),建立包括地板、前后排座椅、安全带与6岁儿童假人在内的校车乘员正面碰撞仿真模型。根据某型客车实车试验结果,验证模型的有效性。通过分析CRS参数的灵敏度,确定主要影响参数。采用正交试验的设计方法进行主要影响参数的正交优化;应用极差分析方法,得到一组最佳水平组合数据;对改进后的模型进行仿真计算,并与原模型比较。结果表明,经过优化的CRS能使6岁乘员的头部和胸部伤害指标都下降20%左右,并使伤害曲线变得更加平缓。  相似文献   

7.
在微型轿车正面碰撞过程中,乘员容易受到严重伤害,优化乘员约束系统对于乘员的保护极其重要.综合利用LS-dyna、VPG等软件,建立了包含Hybird Ⅲ 50th假人、坐椅、安全带和转向系统在内的某微型轿车约束系统模型.针对约束系统中的安全带织带刚度、卷收器锁止特性、安全带上挂点位置、坐垫刚度等敏感设计参数进行了碰撞过程的仿真计算,并给出了相应的乘员响应曲线和人体损伤值,同时总结出约束系统设计参数与乘员保护有效性间的规律.基于加权损伤准则,对约束系统进行了优化,使WWIC降幅达21%,提高了约束系统的保护性能.该规律可以应用于其他车型的乘员约束系统.  相似文献   

8.
为研究厢式客车与行人碰撞后行人运动形态及其损伤机制,根据国家车辆事故深度调查体系(NAIS)中的一个真实案例,利用Madymo仿真软件,建立厢式客车的前部结构模型和中国50百分位的假人模型。在此基础上进行计算机模拟试验,以人体损伤指标为评价标准,研究不同车速和行人朝向对碰撞后的行人运动形态及损伤的影响。结果表明:车速和行人朝向是影响行人损伤程度的主要因素,行人朝向对碰撞后的行人运动形态影响较大;此外,行人先与厢式客车碰撞一侧的小腿损伤值明显大于后碰一侧,行人与地面二次碰撞造成的头部损伤是导致行人死亡的主要原因。  相似文献   

9.
为解决客车与轿车在纵梁高度吸能位置正面碰撞不兼容的问题,设计一种客车前部副级吸能机构。利用三维显式有限元分析软件LS-DYNA 3D,建立轿车Taurus和中型客车6900Y面对面100%重叠碰撞下的数值仿真模型。研究副级吸能机构对解决汽车前部吸能高度不兼容问题的影响,对比分析2车正面碰撞过程中轿车方向盘侵入量、侵入速度和客车车门变形量、乘员头部位置加速度。结果表明:未装副级吸能机构时,轿车方向盘侵入速度和Z方向侵入量较大,容易发生钻碰现象;客车前部副级吸能机构能降低轿车方向盘的侵入量和侵入速度,同时能减小客车驾驶室车门变形量,降低乘员头部位置加速度。  相似文献   

10.
为更好地了解行人与不同车型车碰撞事故中头部损伤来源,选取轿车、运动型多功能车(SUV)及客车3种典型车型,以车速为变量设计仿真试验。首先借助一个真实案例验证Pc-Crash软件,然后利用该软件开展仿真试验,并用已有模型验证轿车事故中的行人抛距值,最后通过做图分析可知:3种车型事故中行人头部损伤程度均随车速的提升而加重;在相同车速下,SUV事故中行人头部损伤最严重;不同车型事故中,车辆所致损伤最高的是SUV型车,而地面所致损伤最高的是客车;轿车与SUV事故中行人头部损伤主要来源于车辆撞击,而客车事故中行人头部损伤来源较为复杂,但多数情况下来源于地面撞击。  相似文献   

11.
Introduction: Although public buses have been demonstrated as a relatively safe mode of transport, the number of injuries to public bus passengers is far from negligible. Existing studies of public bus safety have focused primarily on injuries caused by collisions. Surprisingly, limited effort has been devoted to identifying factors that increase the severity of passenger injuries in non-collision incidents. Method: Our study therefore investigated the injury risk of public bus passengers involved in collision incidents and non-collision incidents comparatively, based on a police-reported dataset of 17,383 passengers injured on franchised public buses over a 10-year period in Hong Kong. A random parameters logistic model was established to estimate the likelihood of fatal and severe injuries to passengers as a function of various factors. Results: Our results indicated substantial inconsistences in the effects of risk factors between models of non-collision injuries and collision injuries. The severity of passenger injuries tended to increase significantly when non-collision incidents occurred due to excessive speed of bus drivers, on double-decker buses, in less urbanized areas, in winter, in heavy rains, during daytime, and at night without street lighting. Elderly female passengers were also found more likely to be fatally or severely injured in non-collision incidents if they lost their balance while boarding, alighting from, or standing on a bus. In comparison, the following factors were associated with a greater likelihood of fatal or severe injuries in collision incidents: elderly female passengers, standing passengers who lost balance, buses out of driver control, double-decker buses, collisions with vehicles or objects, and less urbanized areas. Practical Applications: Based on our comparative analysis, more targeted countermeasures, namely “4E” (engineering, enforcement, emergency, and education) and “3A” (awareness, appreciation, and assistance), were recommended to mitigate collision injuries and non-collision injuries to public bus passengers, respectively.  相似文献   

12.
INTRODUCTION: To examine the association between child passenger injury risk, restraint use, and crash time (day vs. night) for children in crashes of vehicles driven by teenage versus adult drivers. METHODS: Cross-sectional study involving telephone interviews with insured drivers in a probability sample of 6,184 crashes involving 10,028 children. RESULTS: Child passengers in teen nighttime crashes had an increased injury risk and an increased risk of restraint nonuse compared with those in teen daytime crashes. This increased injury risk can be explained by differences in the age of child passengers, collision type, and child passenger's restraint status associated with time of day. CONCLUSIONS: In order to limit the risk of injury to child passengers driven by teens, Graduated Driver Licensing (GDL) laws should include provisions restricting nighttime driving, as well as mandates for age-appropriate restraint for child passengers. Consideration should also be given for education in child passenger safety for novice teen drivers as part of the licensing process. IMPACT ON INDUSTRY: Results of this study can be used to support advocacy efforts by the automotive industry and others to promote nighttime driving restrictions on novice drivers. In addition, given that both driver groups were more likely to be involved in a single-vehicle collision during the night, technologies such as electronic stability control may offer opportunities for protection. Further reseach on specific circumstances of teen nighttime crashes is needed to inform industry efforts to improve visibility or vehicle operation under poor lighting conditions.  相似文献   

13.
Abstract

Objective: Although bus travel is one of the safest modes of transport, a substantial number of bus passengers in London are still injured in collision and harsh maneuver incidents, in particular emergency braking. It is not well understood how these passengers are injured. The objective was to better understand the injury mechanisms and develop countermeasures with a test and assessment procedure to prevent or mitigate these injuries.

Methods: The UK national STATS19 data were used to determine the size of the problem. Data, including CCTV footage, in combination with inspection of current buses, were used to determine injury mechanisms and identify features and areas in buses associated with more injuries.

An assessment system based on visual inspection was developed to encourage a reduction in the number of features associated with injury.

Results: The STATS19 analysis showed that three quarters of all injured casualties occurred in incidents where there was no impact, with this proportion rising for seriously injured casualties. Overrepresentation of older females was also seen.

The CCTV analysis and bus examinations highlighted issues with poorly positioned handrails, lack of compartmentalization (restraint), and objects with sharp edges and corners. It also showed that a much higher proportion of passengers seated in the area close to the middle doors and wheelchair area were injured compared to other areas of the bus. Factors contributing to this result were that this area contained more features associated with injury and that persons with reduced mobility have greater exposure in this area; that is, more vulnerable passengers currently sit in the less safe areas of the bus.

Conclusions: A novel analysis of CCTV footage has enabled a better understanding of injury mechanisms for bus passengers to be developed. In combination with inspection of current buses, this has been used to develop an assessment system to improve the safety of buses in London.  相似文献   

14.
为定量评价大坝浇筑过程空间冲突致灾事故后果,通过对缆机运输典型情景进行危害能量运动分解,确定在水平和竖直方向运动方式,阐述危害能量在流动路径相互转化形式;根据能量守恒定律,分析危害能量在吊罐与承灾体碰撞接触之间转移规律,将吊罐与人头部接触过程抽象为带强阻尼的弹簧振子系统,建立危害能量与碰撞冲量相等的动量方程,量化空间冲突致灾后果。结果表明:吊罐坠落危害能量极大,产生的碰撞冲击力与吊罐的运输速度、高度呈正相关,与阻力系数呈负相关,风速、载重对其影响较大。对比2种不同碰撞情景发现,机械碰撞因顶部承载力缓冲,对人头部产生伤害远小于直接碰撞,并对碰撞结果分级评价,研究结果可为大坝浇筑交叉作业空间冲突致灾风险评价提供参考。  相似文献   

15.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

16.
为提高公共交通安检系统服务效率,考虑旅客“绕行取行李”“等待取行李”的携行行为,分析安检系统服务流程,构建安检系统的Jackson排队网络模型;分析旅客人体安检和行李安检之间的速度差,厘定在携行行为条件下及不同情境中旅客提取行李前的等待时间,并修正安检系统的Jackson排队网络模型;优化安检系统服务参数,实现系统服务设施的最优配置;以某公共客运站为研究对象,进行案例验证分析。结果表明:优化模型不仅能改善安检服务设施配置效率,而且显著降低系统稳态条件下的平均等待队长;增加“绕行取行李”行为的旅客比例能显著降低旅客提取行李前的平均等待时间。  相似文献   

17.
Objective: This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts.

Methods: A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects.

Results: The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint–based and recliner stiffness–based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks.

Conclusion: As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.  相似文献   


18.
为了探明内河船舶碰撞事故致因内在联系,基于船舶碰撞事故调查报告,从人-机-环-管视角构建事故致因复杂网络模型。运用“2-4”模型从人-机-环-管视角识别和提取事故致因,采用事故树方法分析调查报告中碰撞事故过程,提取内河船舶碰撞事故致因链,利用复杂网络理论融合多事故致因链,构建包括36个节点、123条边在内的事故致因网络,计算致因网络拓扑特征参数,定量分析内河船舶碰撞事故致因之间相互作用。研究结果表明:疏忽瞭望、错误估计碰撞危险、安全管理不到位、船员不适任、船与船通信信息不足、未及时行动是内河船舶碰撞事故的关键致因。同时,内河船舶碰撞致因网络是1个无标度网络,且具有小世界特性,表明事故致因之间连锁效应明显,管控上述关键致因可有效预防碰撞事故。研究结果可为预防内河船舶碰撞事故、提高内河航运管理水平提供参考。  相似文献   

19.
为研究行人与轿车正碰后卷绕型运动形态规律以及行人损伤情况,基于PC Crash和MADYMO软件进行仿真分析。分析不同发动机罩倾斜程度对行人抛距的影响,以及不同车速、行人走向、前挡风玻璃倾角对行人头部、胸腔的损伤影响,最后通过CIDAS数据库中的3起真实案例进行验证。结果表明:分段抛距公式不仅能反映行人抛距变化趋势,而且在2个分段范围内均能较好地拟合实际抛距,平均误差为4.23%,实际案例验证的结果误差在5%以内,证明实验方法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号