首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< or = +/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published.  相似文献   

2.
The objective of the research work was to evaluate the efficiency of three different sampling methods (Ghost Wipe?, micro-vacuum, and ChemTest?) in the recovery of Be dust by assessing: (1) four Be compounds (beryllium acetate, beryllium chloride, beryllium oxide and beryllium aluminium), (2) three different surfaces (polystyrene, glass and aluminium) and (3) inter-operator variation. The three sampling methods were also tested on site in a laboratory of a dental school for validation purposes. The Ghost Wipe? method showed recovery ranging from 43.3% to 85.8% for all four Be compounds and for all three quantities of Be spiked on Petri dishes, while recovery with the micro-vacuum method ranged from 0.1% to 12.4%. On polystyrene dishes with 0.4 μg Be, the recovery ranged from 48.3% to 81.7%, with an average recovery of 59.4% for Operator 1 and 68.4% for Operator 2. The ChemTest? wipe method with beryllium acetate, beryllium chloride, and AlBeMet? showed analogous results that are in line with the manufacturer's manual, but collection of beryllium oxide was negative. In the dental laboratory, Ghost Wipe? samplings showed better recovery than the micro-vacuum method. The ratios between the recovered quantities of Be in each location where the Ghost Wipe? was tested differed substantially, ranging from 1.45 to 64. In the dental laboratory, a faint blue color indicating the presence of Be was observed on the ChemTest? wipes used in two locations out of six. In summary, the Ghost Wipe? method was more efficient than micro-vacuuming in collecting the Be dust from smooth, non-porous surfaces such as Petri dishes by a factor of approximately 18. The results obtained on site in a dental laboratory also showed better recovery with Ghost Wipes?. However, the ratio of Be recovered by Ghost Wipes? versus micro-vacuuming was much lower for surfaces where a large amount of dust was present. Wet wiping is preferred over micro-vacuuming for beryllium forms, but this conclusion probably applies to the ultra-low particulate loading levels (0.4 micrograms or less) which was tested in this study.  相似文献   

3.
The primary goal of this study is to compare wet versus dry sampling methods for three different media, (Whatman 41 filter papers, GhostWipes, and SKC Smear Tabs), These media were selected because they are the most commonly used means for the collection of beryllium from contaminated surfaces within the DOE Complex. A range of known concentrations of beryllium was introduced onto a smooth nonporous surface. All three types of media were tested for collection efficiency in both the wet and dry mode and analyzed by inductively-coupled plasma atomic emission spectrometry (ICP-AES).  相似文献   

4.
采用玻璃纤维滤筒采集工业废气中铍及其化合物,硝酸-氢氟酸混酸体系微波消解滤筒、硝酸镁一硝酸混合液作为基体改进剂,石墨炉原子吸收法测定铍。本方法前处理操作过程简单、省时、酸用量少、环境污染小,方法的灵敏度和准确度都有很大的提高。当采样体积为30L,工业废气中铍的最低检出质量浓度为1×10μmg/m^3。  相似文献   

5.
A number of methods are used to assess exposure to high-molecular weight allergens. In the occupational setting, airborne dust is often collected on filters using pumps, the filters are eluted and allergen content in the eluate analysed using immunoassays. Collecting inhalable dust using person-carried pumps may be considered the gold standard. Other allergen sampling methods are available. Recently, a method that collects nasally inhaled dust on adhesive surfaces within nasal samplers has been developed. Allergen content can be analysed in eluates using sensitive enzyme immunoassays, or allergen-bearing particles can be immunostained using antibodies, and studied under the microscope. Settling airborne dust can be collected in petri dishes, a cheap and simple method that has been utilised in large-scale exposure studies. Collection of reservoir dust from surfaces using vacuum cleaners with a dust collector is commonly used to measure pet or mite allergens in homes. The sampling methods differ in properties and relevance to personal allergen exposure. Since methods for all steps from sampling to analysis differ between laboratories, determining occupational exposure limits for protein allergens is today unfeasible. A general standardisation of methods is needed.  相似文献   

6.
Beryllium is widely distributed in soils at low levels, but it can also occur naturally in higher concentrations in a variety of materials exploited for many industrial applications. Beryllium is also one of the most toxic natural elements and is known to be a human carcinogen. A concise account of the literature data on baseline concentrations of Be in soils illustrates the possibility of worldwide presence of areas with a high natural background concentration of Be (up to 300 mg/kg), the crustal abundance of which is generally estimated to be in the range 2–6 mg/kg. Nevertheless, the number of available data is rather limited in comparison with those about other toxic elements such as Pb, Cd and Cr. This has probably caused the choice of low values of concentration level as the reference for the definition of soil contamination: these values are not always realistic and are not applicable to large areas. As a case study, we report and analyse a diffuse, unusually high (up to 80 mg/kg, average approximately 20 mg/kg), natural occurrence of beryllium in loose and poorly consolidated pyroclastic layers related to the Pleistocene activity of the Vico volcano. Additionally, the analysis of Be leachability has been carried out, providing evidence of a not negligible mobility in contrast with the scarce data presented in the literature that usually indicate beryllium as an element with low mobility in oxidising surface environmental conditions. This research marks the beginning of a possible reappraisal of beryllium geochemical behaviour and background levels, providing more realistic reference values for risk assessment and land management.  相似文献   

7.
Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(?) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed performance data show that sample preparations using nitric acid alone, or combinations of nitric and hydrochloric acids, are not effective for complete extraction of Be from the SRM 1877 refractory BeO particulate matter spiked on air filters; but that effective recovery can be achieved by using sample preparation procedures utilizing either sulfuric or hydrofluoric acid, or by using methodologies involving ammonium bifluoride with heating. Laboratories responsible for quantitative determination of Be in workplace samples that may contain high-fired BeO should use quality assurance schemes that include BeO-spiked sampling media, rather than solely media spiked with soluble Be compounds, and should ensure that methods capable of quantitative digestion of Be from the actual material present are used.  相似文献   

8.
The use of antineoplastic drugs in health care steadily increases. Health care workers can be occupationally exposed to antineoplastic drugs classified as carcinogenic or teratogenic. Monitoring of surface contamination is a common way to assess occupational exposure to antineoplastic drugs, since wipe sampling is used as a surrogate measure of dermal exposure. Since no occupational limits for antineoplastic drugs in work environments exist, 'hygienic guidance values' (HGVs) should be used instead. HGVs are practicable, achievable levels, not health based, and can be calculated from exposure data from representative workplaces with good occupational hygiene practices. So far, guidance values for surface monitoring of antineoplastic drugs only exist for pharmacies where antineoplastic drugs are prepared. The objective was to propose HGVs for surface monitoring of cyclophosphamide (CP) and ifosfamide (IF) in Swedish hospitals where antineoplastic drugs are administered to patients. In total, 17 workplaces located at six hospitals in Sweden were surveyed by wipe sampling. Wipe samples were collected, worked up and then analyzed with liquid chromatography tandem mass spectrometry. Surface contamination of CP and IF was found on 80% and 73% of the sampled surfaces, thus indicating that there is potential for health care workers to be exposed to CP and IF via the skin. The median surface load of CP was 3.3 pg cm(-2) (range <0.05-10,800 pg cm(-2)). The corresponding value for IF was 4.2 pg cm(-2) (range <0.13-95,000 pg cm(-2)). The highest surface loads were found on the floors. The proposed HGVs were set at 90th percentile values, and can be applicable to hospital workplaces where patients are treated with CP or IF. Surface monitoring combined with HGVs is a useful tool for health care workers to regularly benchmark their own surface loads which could control and reduce the occupational exposure to CP and IF in hospital workplaces. Thus, the occupational safety of the health care workers will be increased.  相似文献   

9.
Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 microg m(-3) (air) and the United States Department of Energy has implemented an action level of 0.2 microg m(-3) (air) and 0.2 microg/100 cm(2) (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation) and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers and others.  相似文献   

10.
Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air.  相似文献   

11.
As a complement to traditional exposure assessment, monitoring deposition of aerosols can be a simple and quick screening method for identifying deposited aerosols. In this presentation examples of screening studies, based on wipe sampling in combination with adequate analytical techniques, are described. These screening methods are rapid, simple and easy to carry out. The examples given in this presentation show a broad applicability and the methods are proven useful for assessing aerosol distribution in the workplace as well as to identify target spots for more extensive assessment of a worker's exposure situation.  相似文献   

12.
To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.  相似文献   

13.
In the field of industrial hygiene, besides the necessity of monitoring phosphine with direct reading apparatus to prevent accidents, there is a need for a method of sampling and analysing phosphine to control workers' exposure. The use of filters impregnated with silver nitrate to collect arsine, phosphine and stibine in workplace air has been described in the literature. Having previously chosen this type of filter to collect arsine, we studied its characteristics for phosphine capture. A filter impregnated with sodium carbonate was used both as a prefilter to collect the particles and to trap arsenic trioxide. After dissolving the silver compounds in nitric acid, ICP emission spectrometry was used to carry out the analysis. This article describes the comparative sampling we performed in a microelectronic laboratory and in a fumigation chamber (130 samples) to determine the concentration of AgNO3 impregnation solution to be used, the detection limit of the method and the retention capacity of the impregnated filters. Interference with other gases reacting with silver nitrate was studied and the storage time for sampled filters and analysis solutions was checked. The detection limit of the adopted method is better than 1 microg per filter, and the retention capacity exceeds 300 microg per filter. The problem of how to sample phosphine when H2S, NH3, or HCl is present has been solved, but the problem of sampling phosphine in atmospheres where acetylene evolves remains. Sampled filters and filter solutions are stable for more than three months at ambient temperature.  相似文献   

14.
This paper reviews the framework that underpins the development of a new generation of personal samplers capable of operating at much lower flowrates that those of the current generation and so capable of being used for exposure assessment not only for 'traditional' occupational populations (i.e., industrial workers) but also for people exposed to aerosols in the ambient atmosphere (including children). The opportunity for this new generation of samplers stems from the availability of very light and compact low-flowrate pumps. The development and deployment of such instruments presents: (a) physical challenges in terms of how to collect particle size fractions in a manner which is consistent with the new particle size-selective sampling criteria, and (b) analytical challenges in terms of how to quantitate the much smaller amounts of collected material that need to be analysed. The paper lays out the physical and analytical scenarios, and points the way forward to how such challenges can be overcome. Work is already in progress in several countries to develop prototype instruments for applications like those described.  相似文献   

15.
Little is known about the physicochemical properties of beryllium aerosols associated with increased risk of beryllium sensitization and chronic beryllium disease (CBD). Such information is needed to evaluate whether airborne mass of beryllium is the appropriate metric of exposure or alternatively to provide a scientific basis for using information on particle size, surface area, and chemistry to support an improved exposure limit based on bioavailability through the inhalation and dermal routes of exposure. Thus, we used a suite of analytical techniques to characterize aerodynamically size-fractionated beryllium particles and powders that have been associated in epidemiological studies with higher prevalence of CBD. Aerosol particles were sampled from the ventilation systems of production lines for powders of beryllium metal and beryllium oxide and for ingots of copper-beryllium alloy. End product powders from the metal and oxide production lines were also collected.Particles released during production of beryllium metal were found to be complex, having heterogeneous composition, including reactive species such as fluorine. Powders from beryllium metal production were of high purity with only a minor component of beryllium oxide. Both particles and powders from oxide production were high-purity oxide. Particles released during production of copper-beryllium alloy were heterogeneous, being predominantly copper oxides. Thus, all particles and powders contain at least some beryllium in the form of beryllium oxide.These data justify efforts to thoroughly characterize beryllium aerosol properties when performing exposure assessments. The data also suggest that differences in particle chemical composition, size, number, and surface area may influence bioavailability of beryllium and contribute to risk of CBD. However, a scientific basis does not yet exist to replace mass as the current metric of exposure.  相似文献   

16.
Although numerous studies have focused on the seasonal dynamics of riverine zooplankton, little is known about its short-term variation. In order to examine the effects of sampling frequency and sampling effort, microcrustacean samples were collected at daily intervals between 13 June and 21 July of 2007 in a parapotamal side arm of the river Danube, Hungary. Samples were also taken at biweekly intervals from November 2006 to May 2008. After presenting the community dynamics, the effect of sampling effort was evaluated with two different methods; the minimal sample size was also estimated. We introduced a single index (potential dynamic information loss; to determine the potential loss of information when sampling frequency is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios.  相似文献   

17.
A simple assay for some proteolytic enzymes has been developed which can be performed directly on the surface of a cellulose nitrate filter used to capture the analyte during workplace monitoring for health and safety purposes. Following air sampling the analysis is performed on the filter which is retained within the air sampler. This involves two steps: first, a 15 min incubation in which the captured enzyme is dissolved and then digests an alkaline-phosphatase-labelled antibody immobilised as a small dot on the surface of the filter; and second, is a 10 min incubation with substrate solution, which follows an in situ wash under a vacuum. During the incubation colour develops on the spot at the location of the immobilised enzyme antibody conjugate. The intensity of the spot can be assessed visually within the sampler to ascertain the presence or absence of captured enzyme, or alternatively quantitative results can be obtained using an optical scanner. The limit of detection is 5 ng per filter for subtilisin (20 ng for visual discrimination between this standard and the zero). The assay is stable to the effects of ambient air sampling at 31 min(-1) for 18 h.  相似文献   

18.
Recent laboratory research indicates physiologic sampling of gas and vapor may provide more representative estimates of personal exposures than traditional methods. Modifications to the physiologic sampling pump (PSP) used in that research are described which extend its usefulness to size-selective sampling of particulates. PSPs used in previous research varied motor speed to keep sampling proportional to the subject's inhalation. This caused airflow and particle velocities through the collection device to continually change making those pumps unsuitable for sampling particulates. The modified implementation of the PSP pulls a constant airflow into and through a cyclone, then uses valves to either direct the airflow through, or divert the airflow around, the sampling filter. By using physiologic inputs to regulate the fraction of each second that air flows through the sampling filter, samples may be collected in proportion to inhalation rate. To evaluate the performance of a functional prototype 5 different sizes of monodisperse aerosols of ammonium fluorescein were generated by a vibrating orifice aerosol generator and introduced into a calm air chamber. To simulate different inhalation rates the valves of the PSP were energized using 9 different duty cycles. Efficiency curves are presented and compared to a standard respirable convention by bias mapping. The performance of the modified cyclone used in the PSP sampling head compared favorably with a commercially available cyclone of the same model, operating at a constant airflow (± 10% over almost all the size distributions of concern). The new method makes physiologic sampling of the respirable fraction of particulates feasible.  相似文献   

19.
Standardized conventions governing the fractions of airborne particles that can penetrate the human head airways, the thoracic airways and the alveolar spaces have been internationally (although not universally) adopted. Several agencies involved in setting limit values for occupational exposure concentrations have taken these conventions into account when considering the appropriate standard for specific chemicals, in order to ensure the standards are biologically relevant. A convention is selected based on the characteristic health effects, and forms the basis of measurement against the limiting concentration value. In order to assess exposure for comparison to this metric or any other purposes, it is necessary to choose a sampler whose performance matches the convention, and protocols have been developed and used to test sampler performance. Several aerosol sampling devices are available, nominally at least, for each of the conventions. Some considerations important to the sampling of airborne particles containing beryllium with regard to the sampling conventions, the test protocols and sampler performance are discussed.  相似文献   

20.
Beryllium concentrations in atmospheric particulate and soil samples in and around a Beryllium Processing Facility (BPF) have been measured. The mean air concentration level of beryllium in and around the fence line of the BPF is 0.48 ± 0.43 ng m-3 (n = 397) and is mostly influenced by diurnaland seasonal changes. The observed air concentration levelswere well below the prescribed ambient air quality (AAQ)standard of 10 ng m-3. The soil concentration levels ofberyllium in the study area were found to be in the range of 1.42–2.75 g g-1. The mass median aerodynamic diameter (MMAD)of beryllium aerosols in ambient air was found to be 6.9 m.Source identification using the Enrichment Factor (EF) approachindicates soil as the predominant contributory source for air concentrations at the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号