首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo H  Lee SC  Louie PK  Ho KF 《Chemosphere》2004,57(10):1363-1372
Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical.  相似文献   

2.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

3.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   

4.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

5.
A sampling program was conducted to determine the ambient VOC levels in the city of Izmir, Turkey during daytime and overnight periods between mid-August and mid-September 1998. Sampling sites were selected at high-density traffic roads and junctions far from stationary VOC sources. Samples were analyzed for benzene, toluene, m, p-xylene and o-xylene (BTX), alkylbenzenes (ethylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene), n-hexane and, n-heptane. Results were compared with similar data from other cities around the world and for probable health dangers and sources of the compounds. Results of this study indicated that Izmir has rather high ambient BTX concentrations compared to many polluted cities in the world. Toluene was the most abundant VOC in Izmir air and was followed by xylenes, benzene and alkylbenzenes, respectively. All were strongly dependent on the expected daily variations of traffic flow in the city. The concentrations of other VOCs correlated well with benzene concentration at most sampling sites, excluding Gumuldur station indicating that ambient VOC levels were mainly affected by motor vehicle emissions. The toluene-to-benzene ratios for urban and non-urban sites were in good agreement with previously reported values, indicating a good relationship between the motor vehicle emissions and ambient VOC levels.  相似文献   

6.
ABSTRACT

Total volatile organic compounds (TVOCs) in the urban ambient environment of Delhi were monitored from November 1994 to June 1995 at 13 sites using an inexpensive and a manual-labor-intensive sample collection procedure in want of sophisticated equipment. The results of the study show appreciable levels of TVOCs in the ambient environment of Delhi. The amount of TVOCs in the ambient environment was found to vary between 3 and 42 ppmv and exhibited wide temporal and seasonal variations. On a diurnal cycle, TVOC levels mostly peaked at 9:00 a.m., which coincided with the peak traffic hour. TVOC buildup in the urban atmosphere has serious implications for air quality through the formation of highly toxic oxidants. The results of this preliminary study make out a strong case for a regular monitoring of TVOCs in the urban environment of Delhi.  相似文献   

7.
This study examined the indoor concentrations of a wide range of volatile organic compounds (VOCs) in currently built new apartments every month over a 24-month period and the source characteristics of indoor VOCs. The indoor total VOC (TVOC) concentrations exhibited a decreasing tendency over the 24-month follow-up period. Similar to TVOCs, the median indoor concentrations of 33 of 40 individual VOCs (all except for naphthalene and six halogenated VOCs) revealed decreasing tendencies. In contrast, the indoor concentrations of the six halogenated VOCs did not reveal any definite trend with time. Moreover, the indoor concentrations of those halogenated VOCs were similar to the outdoor concentrations, suggesting the absence of any notable indoor sources of halogenated VOCs. For naphthalene (NT), the indoor concentrations were significantly higher than the outdoor concentrations, suggesting the presence of indoor NT source(s). The floor/wall coverings (39 %) were the most influential indoor source of indoor VOCs, followed by household cleaning products (32 %), wood paneling/furniture (17 %), paints (7 %), and moth repellents (5 %).  相似文献   

8.
The spatial variations of volatile organic compounds (VOCs) were characterized in the Village of Waterfront South neighborhood (WFS), a "hot spot" for air toxics in Camden, NJ. This was accomplished by conducting "spatial saturation sampling" for 11 VOCs using 3500 OVM passive samplers at 22 sites in WFS and 16 sites in Copewood/Davis Streets (CDS) neighborhood, an urban reference area located ~1000 m east of the WFS. Sampling durations were 24 and 48 h. For all 3 sampling campaigns (2 in summer and 1 in winter), the spatial variations and median concentrations of toluene, ethylbenzene, and xylenes (TEX) were found significantly higher (p < 0.05) in WFS than in CDS, where the spatial distributions of these compounds were relatively uniform. The highest concentrations of methyl tert-butyl ether (MTBE) (maximum of 159 μg m(-3)) were always found at one site close to a car scrapping facility in WFS during each sampling campaign. The spatial variation of benzene in WFS was found to be marginally higher (p = 0.057) than in CDS during one sampling campaign, but similar in the other two sampling periods. The results obtained from the analyses of correlation among all species and the proximity of sampling site to source indicated that local stationary sources in WFS have significant impact on MTBE and BTEX air pollution in WFS, and both mobile sources and some of the stationary sources in WFS contributed to the ambient levels of these species measured in CDS. The homogenous spatial distributions (%RSD < 24%) and low concentrations of chloroform (0.02-0.23 μg m(-3)) and carbon tetrachloride (0.45-0.51 μg m(-3)) indicated no significant local sources in the study areas. Further, results showed that the sampling at the fixed monitoring site may under- or over-estimate air pollutant levels in a "hot spot" area, suggesting that the "spatial saturation sampling" is necessary for conducting accurate assessment of air pollution and personal exposure in a community with a high density of sources.  相似文献   

9.
To better understand the contribution of biogenic volatile organic compounds to the formation of secondary organic aerosol (SOA) in high mountain regions, ambient aerosols were collected at the summit of Mt. Tai (1534 m, a.s.l.), Central East China (CEC) during the Mount Tai Experiment 2006 campaign (MTX2006) in early summer. Biogenic SOA tracers for the oxidation of isoprene, α/β-pinene, and β-caryophyllene were measured using gas chromatography/mass spectrometry. Most of the biogenic SOA tracers did not show clear diurnal variations, suggesting that they are formed during long-range atmospheric transport or over relatively long time scales. Although isoprene- and α/β-pinene-derived SOA tracers did not correlate with levoglucosan (a biomass burning tracer), β-caryophyllinic acid showed a good correlation with levoglucosan, indicating that crop residue burning may be a source for this acid. Total concentrations of isoprene oxidation products are much higher than those of α/β-pinene and β-caryophyllene oxidation products. The averaged ratio of isoprene to α/β-pinene oxidation products (Riso/pine) was 4.9 and 6.7 for the daytime and nighttime samples, respectively. These values are among the highest in the aerosols reported in different geographical regions, which may be due to the large isoprene fluxes and relatively high levels of oxidants such as OH in CEC. Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) derived from isoprene, α/β-pinene, and β-caryophyllene to be 0.42–3.1 μgC m?3 (average 1.6 μgC m?3) during the daytime and 0.11–4.2 μgC m?3 (1.7 μgC m?3) during the nighttime. These values correspond to 2.9–23% (10%) and 3.2–28% (9.8%) of the total OC concentrations, in which isoprene-derived SOC accounts for 58% and 63% of total SOC during the daytime and nighttime, respectively. This study suggests that isoprene is a more significant precursor for biogenic SOA than α/β-pinene and β-caryophyllene at high altitudes in CEC.  相似文献   

10.
Mount Washington, NH in the White Mountain National Forest, is flanked to the north-northeast and south by two Class I Wilderness areas, the Great Gulf and Presidential Range-Dry River Wildernesses, respectively. The Clean Air Act protects Class I Area natural resource values from air pollution. Aerosol sulfate, a fine particulate component that is often transported long distances, is a known contributor to visibility degradation and acidic deposition. We examined summertime fine particulate aerosol mass and sulfate, strong acidity and ammonium concentrations from 1988 to 2007 on Mount Washington at two elevations, 452 and 1540 m (msl). The former site is often within, and the latter at the interface of, the planetary boundary layer. Comparisons of sampling interval durations (10 and 24 h) and site vs. site are made. We also examine the extent to which aerosol sulfate is neutralized.Ten hour (daytime) compared to 24 h samples have higher mass and aerosol sulfate concentrations, however paired samples are well correlated. Fine mass concentrations compared between the 452 m and 1540 m sites (standard temperature and pressure corrected) show a weak positive linear relationship with the later being approximately 32% lower. We attribute the lack of a strong correlation to the facts that the 1540 m site is commonly at the interface of and even above the regional planetary boundary layer in summer and that it can intercept different air masses relative to the 452 m site. Sulfate is ~18% lower at the higher elevation site, but comprises a greater percentage of total fine mass; 42% compared to 37% for the high and low elevation site, respectively. Aerosol strong acidity was found to increase with increasing sulfate concentrations at both sites. Further the ratio of hydrogen to sulfate ion was greater in 24 h than 10 h samples at the higher elevation site likely due to overnight transport of fresh acidic aerosols.  相似文献   

11.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

12.
We conducted a comparative study on the indoor air quality for Japan and China to investigate aromatic volatile organic compounds (VOCs) in indoor microenvironments (living room, bedroom, and kitchen) and outdoors in summer and winter during 2006–2007. Samples were taken from Shizuoka in Japan and Hangzhou in China, which are urban cities with similar latitudes. Throughout the samplings, the indoor and outdoor concentrations of many of the targeted VOCs (benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes) in China were significantly higher than those in Japan. The indoor concentrations of VOCs in Japan were somewhat consistent with those outdoors, whereas those in China tended to be higher than those outdoors. Here, we investigated the differences in VOC concentrations between Japan and China. Compositional analysis of indoor and outdoor VOCs showed bilateral differences; the contribution of benzene in China was remarkably higher than that in Japan. Significant correlations (p < 0.05) for benzene were observed among the concentrations in indoor microenvironments and between the outdoors and living rooms or kitchens in Japan. In China, however, significant correlations were observed only between living rooms and bedrooms. These findings suggest differences in strengths of indoor VOC emissions between Japan and China. The source characterizations were also investigated using principal component analysis/absolute principal component scores. It was found that outdoor sources including vehicle emission and industrial sources, and human activity could be significant sources of indoor VOC pollution in Japan and China respectively. In addition, the lifetime cancer risks estimated from unit risks and geometric mean indoor concentrations of carcinogenic VOCs were 2.3 × 10?5 in Japan and 21 × 10?5 in China, indicating that the exposure risks in China were approximately 10 times higher than those in Japan.  相似文献   

13.
Continuous on-site measurements of 50 speciated volatile organic compounds (VOCs) were conducted in downtown Guangzhou to characterize the sources and concentration profiles of ambient VOCs. The synchronicity in diurnal variation between the VOCs and NO suggests that traffic emissions were responsible for the observed VOCs in downtown Guangzhou.It was found that the three major constituent species of liquefied petroleum gas (LPG), i.e., propane, iso-butane, and n-butane, together termed LPG alkanes, contributed, on average, 24% of the total VOCs (TVOCs). Their high correlation and synchronized diurnal variations between NO and the LPG alkanes suggest that their origin lies in LPG fueled car exhaust in Guangzhou. LPG buses and taxis were likely to be responsible for the bulk of ambient LPG species. Using propane and 3-methyl pentane (3MC5A) as the indicators for the LPG and gasoline emissions, respectively, the emissions of the LPG fleet were found to increase more than those of the gasoline fleet during the morning and evening rush hours, as well the noontime break in downtown Guangzhou.Although LPG alkanes account for 24% of the TVOC, their contribution to the total ozone forming potential (OFP) is only about 7%. Ethylene and propylene contribute about 26% to the total OFP despite their lower contribution of 16% to the TVOC.  相似文献   

14.
Shanghai Meteorological Administration has established a volatile organic compounds (VOCs) laboratory and an observational network for VOCs and ozone (O3) measurements in the city of Shanghai. In this study, the measured VOCs and O3 concentrations from 15 November (15-Nov) to 26 November (26-Nov) of 2005 in Shanghai show that there are strong day-to-day and diurnal variations. The measured O3 and VOCs concentrations have very different characterizations between the two periods. During 15-Nov to 21-Nov (defined as the first period), VOCs and O3 concentrations are lower than the values during 22-Nov to 28-Nov (defined as the second period). There is a strong diurnal variation of O3 during the second period with maximum concentrations of 40–80 ppbv at noontime, and minimum concentrations at nighttime. By contrast, during the first period, the diurnal variation of O3 is in an irregular pattern with maximum concentrations of only 20–30 ppbv. The VOC concentrations change rapidly from 30–50 ppbv during the first period to 80–100 ppbv during the second period. Two chemical models are applied to interpret the measurements. One model is a regional chemical/dynamical model (WRF-Chem) and another is a detailed chemical mechanism model (NCAR MM). Model analysis shows that the meteorological conditions are very different between the two periods, and are mainly responsible for the different chemical characterizations of O3 and VOCs between the two periods. During the first period, meteorological conditions are characterized by cloudy sky and high-surface winds in Shanghai, resulting in a higher nighttime planetary boundary layer (PBL) and faster transport of air pollutants. By contrast, during the second period, the meteorological conditions are characterized by clear sky and weak surface winds, resulting in a lower nighttime PBL and slower transport of air pollutants. The chemical mechanism model calculation shows that different VOC species has very different contributions to the high-ozone concentrations during the second period. Alkane (40 ppbv) and aromatic (30 ppbv) are among the highest VOC concentrations observed in Shanghai. The analysis suggests that the aromatic is a main contributor for the O3 chemical production in Shanghai, with approximately 79% of the O3 being produced by aromatic. This analysis implies that future increase in VOC (especially aromatic) emissions could lead to significant increase in O3 concentrations in Shanghai.  相似文献   

15.
An atmospheric dispersion model, where the inputs of meteorological field were calculated using a meteorological model, was used to reproduce the observed air pollution conditions for the typical fine day in summer period, especially the concentration of the photochemical oxidants. As well, the effects of an increase in the urban temperature and VOC emissions on the concentration of photochemical oxidants were also considered. The following conclusions were drawn.The observed air pollution levels were well modeled by the atmospheric dispersion model using in this study, although modeled NO levels were slightly lower than the observed levels. An analysis of the temperature data showed that a 1 °C increase in temperature leads to a maximal photochemical oxidant concentration of 5.3 ppb, which is an increase of 11%. Additionally, the effect on the photochemical oxidant concentration due to an increase in the vegetation-derived VOCs was more than double the effect due to an increase in the photochemical reactions. It was found that the temperature and photochemical oxidant concentration were linearly related up to a temperature increase of 3 °C. When the temperature increases up to 3 °C, the concentration of photochemical oxidants increases by 19 ppb. An analysis of the effect of vegetation-derived VOCs on photochemical oxidant concentrations showed that, the concentration of photochemical oxidants was 30 ppb higher in the afternoon by the effect of vegetation-derived VOCs, so even in metropolitan areas with relatively little vegetation, vegetation-derived VOCs have a strong impact on photochemical oxidant concentrations.  相似文献   

16.
Mixing ratios of carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, halocarbons and alkyl nitrates (a total of 72 species) were determined for 78 whole air samples collected during the winter of 1998–1999 in Karachi, Pakistan. This is the first time that volatile organic compound (VOC) levels in Karachi have been extensively characterized. The overall air quality of the urban environment was determined using air samples collected at six locations throughout Karachi. Methane (6.3 ppmv) and ethane (93 ppbv) levels in Karachi were found to be much higher than in other cities that have been studied. The very high CH4 levels highlight the importance of natural gas leakage in Karachi. The leakage of liquefied petroleum gas contributes to elevated propane and butane levels in Karachi, although the propane and butane burdens were lower than in other cities (e.g., Mexico City, Santiago). High levels of benzene (0.3–19 ppbv) also appear to be of concern in the Karachi urban area. Vehicular emissions were characterized using air samples collected along the busiest thoroughfare of the city (M.A. Jinnah Road). Emissions from vehicular exhaust were found to be the main source of many of the hydrocarbons reported here. Significant levels of isoprene (1.2 ppbv) were detected at the roadside, and vehicular exhaust is estimated to account for about 20% of the isoprene observed in Karachi. 1,2-Dichloroethane, a lead scavenger added to leaded fuel, was also emitted by cars. The photochemical production of ozone (O3) was calculated for CO and the various VOCs using the Maximum Incremental Reactivity (MIR) scale. Based on the MIR scale, the leading contributors to O3 production in Karachi are ethene, CO, propene, m-xylene and toluene.  相似文献   

17.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

18.
A fully automated twin ECD gas chromatograph system with sample enriching adsorption–desorption primary stage was deployed on two field campaigns – Ny-Ålesund, Svalbard, Arctic Norway (July–September 1997), and the RRS Discovery CHAOS cruise of the northeast Atlantic (April–May 1998). Concentrations of an extensive set of halocarbons were detected at hourly intervals at pptv levels. We present here the results obtained for the chlorinated solvents, tetrachloroethene (PCE) and trichloroethene (TCE). Average baseline PCE and TCE concentrations of 1.77 and 0.12 pptv, respectively, were recorded in Ny-Ålesund. During pollution incidences, concentrations rose to 5.61 (PCE) and 3.18 pptv (TCE). The cruise data showed average concentrations ranging from 4.26 (PCE) and 1.66 pptv (TCE) for air masses originating over the North Atlantic and Arctic open oceans, to maxima of 15.59 (PCE) and 17.51 pptv (TCE) for polluted air masses from Northern Europe. The data sets emphasise the difficulties in defining remote sites for background tropospheric halocarbon measurements, as Ny-Ålesund research station proved to be a source of tetrachloroethene. The data also suggest possible oceanic emissions of trichloroethene in the sub-tropical ocean.  相似文献   

19.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

20.

Background, aim, and scope  

The aim of the study was to identify the impact of polychlorinated dibenzo-p-dioxin and furan (PCDD/F) emission sources on ambient air concentrations in the Malopolska Region, southern Poland. Three sites were selected: the city center of Krakow (Aleje), an industrial area (Nova Huta), and a rural site (Zakopane). In order to investigate the annual variations of PCDD/F sources, summer and winter time samples were taken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号