首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 595 毫秒
1.
本文基于WRF-CMAQ模型定量分析了气象条件变化对PM2.5的影响.全国337个城市2018~2019秋冬季气象条件转差导致PM2.5平均浓度同比上升约5.55%.24个省市气象条件同比转差,北京气象转差致使PM2.5同比上升约3.66%.从重点区域来看,京津冀及周边“2+26”城市气象条件转差最显著,汾渭平原次之,长江三角洲(以下称长三角)基本持平,分别导致PM2.5浓度同比上升约9.4%、8.3%、1.1%.“2+26”城市和汾渭平原气象条件在11月、1月、2月转差,10月、3月气象条件转好.长三角则10月、11月、3月气象条件转差;12月、1月、2月转好.“2+26”城市2018~2019秋冬季PM2.5浓度同比上升主要为气象条件转差所致;汾渭平原PM2.5同比变化较小,人为减排有效抵消了气象条件转差带来的不利影响;长三角PM2.5浓度同比下降,与气象条件变幅小且污染排放较去年同期降低有关.  相似文献   

2.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

3.
衡水市作为"2+26"城市中典型的低GDP、高污染城市,其空气质量排名常年处于74个重点城市的后10位.自大气重污染成因与治理攻关项目工作开展以来,衡水市开展了大量污染成因研究及污染治理工作,已取得了较为明显的大气污染治理成效.从空气质量变化、排放源、污染物来源解析及气象条件与排放贡献等方面,梳理了衡水市大气污染成因研究及治理经验.结果表明:①衡水市的空气质量得到较大改善,PM10和PM2.5治理成效明显.2018年衡水市ρ(PM10)和ρ(PM2.5)年均值比2017年分别下降了25.12%和19.73%,比2013年分别下降了54.84%和51.22%,但O3污染形势逐渐严峻,以O3为首要污染物的天数由55 d(2013年)增至125 d(2018年).②相比于2016年,衡水市2017年SO2、NOx、CO、PM10、PM2.5、BC、OC、VOC的排放总量均大幅下降.③2013-2018年导致衡水市PM2.5下降的因素中,气象因素占8.0%,排放源因素占92.0%,说明衡水市通过减排措施改善空气质量的效果较为显著.④硝酸盐已经取代硫酸盐成为秋冬季颗粒物二次转化中最重要、占比最高的成分.研究显示,衡水市高ρ(PM2.5)主要以本地排放和临近地区输送为主,为有效控制衡水市PM2.5污染的发生与发展,应采取本地排放控制与"2+26"城市联防联控相结合的方案.   相似文献   

4.
针对京津冀及周边"2+26"城市秋冬季不同大气污染治理措施的减排量进行核算,结果表明,2017~2018年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为43.26,20.63,18.36,28.00和47.31万t,2018~2019年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为16.68,18.11,11.03,17.04和25.33万t.基于此,采用CAMx模型对各项措施的减排效果进行模拟评估,采取措施后,2017~2018年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为22.69μg/m3(42.67%),33.22μg/m3(37.81%),24.28μg/m3(22.58%)和31.26μg/m3(18.67%),2018~2019年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为9.36μg/m3(26.86%),25.73μg/m3(30.62%),16.38μg/m3(16.09%)和20.43μg/m3(12.33%).2017~2018年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:"散乱污"企业治理 > 交通运输结构调整 > 企业错峰生产 > 民用散煤替代 > 燃煤锅炉综合整治,2018~2019年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:重点行业升级改造 > 企业错峰生产 > "散乱污"企业治理 > 交通运输结构调整 > 民用散煤替代 > 燃煤锅炉综合整治.  相似文献   

5.
大气污染防治综合决策支持技术平台典型城市应用研究   总被引:1,自引:0,他引:1  
以典型城市济南市为研究对象,利用大气污染防治综合决策支持技术平台(简称“技术平台”)综合评估了济南市《2018年大气污染治理“十大措施”实施方案》(简称“‘十大措施’”)的实施效果,并进一步基于特定空气质量目标〔济南市2018年ρ(PM2.5)、ρ(O3)同比2017年分别下降20%、8%〕开展大气污染防治策略寻优及费效评估.结果表明:①“十大措施”实施后,SO2、NOx、VOCs、一次PM2.5减排率分别为39%、24%、42%、41%,该情景在2017基准年气象条件下可使济南市2018年ρ(PM2.5)同比下降19%,新增治污成本约4.70×108元,效益-成本比约1.40;单位减排成本最低的本地扬尘源减排对ρ(PM2.5)下降的贡献率最大,建议济南市下一阶段应进一步强化扬尘源减排.②经过策略寻优,反算得到了SO2、NOx、VOCs、一次PM2.5的减排率分别为46%、20%、42%、60%的优化策略,该策略下的新增治污成本约4.69×108元;对比“十大措施”,优化策略提高了SO2和一次PM2.5的减排率,降低对O3具有负贡献的NOx减排率,满足空气质量目标的同时又尽可能地降低了治污成本,将效益-成本比提升至1.88.技术平台在济南市的初步成功应用,为济南市下一阶段的大气污染防治提供基于实证的科学依据;同时对其在我国城市逐步推广具有重要示范意义,可有效支撑大气污染防治综合科学决策制定.   相似文献   

6.
利用京津冀及周边地区大气污染综合立体监测网,在京津冀大气污染传输通道城市(“2+26”城市)开展了PM2.5及其化学组分长期连续观测,并对数据进行深入分析.结果表明:①2017年、2018年和2019年采暖季“2+26”城市PM2.5浓度平均值分别为(84±62)(95±63)和(80±61)μg/m3,达到了京津冀及周边地区2019—2020年秋冬季PM2.5平均浓度同比下降4%的目标;与PM2.5浓度变化相似,其主要化学组分——有机物(OM)浓度最大值出现在2018年采暖季,但二次无机盐(硝酸盐、硫酸盐和铵盐)浓度呈逐年上升趋势,而元素碳、氯盐、地壳物质和微量元素浓度均呈逐年下降趋势.②OM、硝酸盐、硫酸盐、铵盐、地壳物质、元素碳、氯盐和微量元素浓度空间分布存在明显差异.受污染物排放、气象条件以及地形因素的共同影响,PM2.5及其化学组分浓度高值区主要出现在太行山传输通道城市(保定市、石家庄市、邢台市、邯郸市、安阳市和新乡市).③不同空气质量状况下,“2+26”城市PM2.5化学组分浓度年际变化相似,即随空气污染的加重,硝酸盐、硫酸盐和铵盐占PM2.5的比例均上升,而OM占比下降.研究显示,采暖季“2+26”城市空气质量总体得到改善,但需进一步加强对PM2.5中二次组分的科学管控.   相似文献   

7.
张凯  吕文丽  王婉  王健  段菁春  邸伟  孟凡 《环境科学研究》2019,32(10):1720-1729
为支撑保定市空气污染控制目标实现,于2014年起开展了保定市大气污染研究工作,明确了保定市大气污染的主要来源与成因,并提出了有针对性的治理对策.结果表明:①保定市大气重污染主要发生在冬季,民用燃煤排放是大气重污染发生的根本原因.2013年12月1日-2014年2月28日冬季ρ(SO2)、ρ(NO2)、ρ(PM10)和ρ(PM2.5)分别为2014年年均值的1.93、1.64、1.46和1.61倍.民用燃煤源占2014年PM2.5全年来源的19.8%,占冬季PM2.5来源的30.9%.②集中供热和清洁取暖措施对空气质量改善效果明显.2015-2018年民用散煤综合整治后,ρ(PM2.5)年均值由2013年的135 μg/m3降至2018年的67 μg/m3,降幅达50.4%,全年重度污染和严重污染天数占比从30.0%降至9.0%.清洁取暖率较高区县的冬季空气综合指数和ρ(PM2.5)明显低于清洁取暖率低的区县.③民用散煤综合整治降低了冬季PM2.5中民用燃煤源占比,优化了能源结构.民用燃煤在PM2.5中占比由2014年冬季的30.9%分别降至2017-2018年冬季的25.0%和2018-2019年冬季的22.0%,煤炭消费量占比由2014年的49.6%降至2017年的38.4%,电力消费量占比由2014年的33.8%升至2017年的39.5%,天然气消费量占比由2014年的2.6%升至2017年的6.8%.总体而言,尽管保定市空气质量得到了一定改善,但总燃煤量占比仍高于北京市(9.8%)和天津市(36.1%),其主城区南部区县仍可进一步提高清洁取暖率,以促进空气质量不断改善.   相似文献   

8.
京津冀及周边地区秋冬季大气重污染过程频发,而在一些污染过程中PM2.5会呈现爆发式增长特征,受到社会、公众的广泛关注,但现阶段针对PM2.5爆发式增长的成因仍缺乏系统性的认知.对京津冀及周边地区在2015-2019年秋冬季(10月-翌年3月)大气重污染过程进行整理分析,并以2016年12月16-22日和2019年1月10-14日两次典型重污染过程中的PM2.5爆发式增长为典型案例进行成因解析,归纳得出PM2.5爆发式增长的主要原因为本地积累、区域传输和二次转化.对于北京市,PM2.5爆发式增长通常不是上述某一原因独立导致,而是三者综合作用的结果.对于主要由本地积累引起的PM2.5爆发式增长,应提前采取预警应急措施,降低ρ(PM2.5)峰值;对于主要由区域传输引起的PM2.5爆发式增长,应开展区域应急联动,降低传输通道沿线城市对ρ(PM2.5)累积的贡献;对于主要由二次转化引起的PM2.5爆发式增长,应通过一次颗粒物和SO2、NOx、VOCs等气态污染物的协同减排,降低高湿条件下污染物二次转化的影响.在2016年12月16-22日的大气重污染过程期间,京津冀及周边地区通过采取上述应急管控对策,减少了主要污染物排放量,有效降低了ρ(PM2.5)峰值.建议可根据各地PM2.5爆发式增长的具体成因,通过提前采取重污染天气预警应急措施、区域应急联动和多污染物(一次颗粒物、SO2、NOx、挥发性有机物等)协同减排等应急管控对策,有效减少PM2.5爆发式增长的次数、降低PM2.5爆发式增长的速率,减缓大气重污染的发生和发展.   相似文献   

9.
基于地面气象观测资料计算大气自净能力指数ASI,和环境监测站的实测PM2.5浓度数据,利用城市大气环境荷载指数研究分析了2个时段单位人口的污染物排放率的变化,以及2013年9月~2019年2月京津冀及周边主要城市气象条件和减排措施对空气污染物浓度变化的作用.结果显示:秋冬季节污染物的削减力度明显大于春夏季.2014年秋冬季有74.5%城市实现减排,区域平均减排12.6%,减排初见成效;2017年和2018年秋冬季,京津冀及周边地区持续大幅减排,其中京津冀区域相对基准年分别减排54.0%和47.7%.长治市在2014~2017年秋冬季排放率均高于基准年,直至2018年冬季始实现减排27.6%;石家庄市排放率变化幅度波动较大,2016年冬季相比2014年冬季增加68.2%,今后区域污染物防控需要重点关注以上2个城市.城市大气环境荷载指数能够客观定量反映出典型减排时段的排放率变化方向和幅度,是一种评估气象条件和排放控制措施二者对污染物浓度变化各自作用的简单有效方法.  相似文献   

10.
为了评估2018年春节期间(2月15—16日)京津冀及周边地区“2+26”城市烟花禁限放措施的效果,采用浓度特征对比、ρ(PM2.5)/ρ(CO)等方法,对“2+26”城市的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)进行分析,并定量估算了除夕夜烟花燃放对ρ(PM2.5)和ρ(SO2)的贡献率.结果表明:“2+26”城市烟花的集中燃放会导致ρ(PM2.5)、ρ(SO2)显著增长,出现以PM2.5为首要污染物的重污染时段,2018年12月16日03:00区域内14个城市ρ(PM2.5)达到重度及以上污染水平,呈区域性污染特征;与2017年同期(1月27—28日)相比,2018年春节期间(2月15—16日)14个城市烟花燃放对ρ(PM2.5)平均贡献量呈下降趋势,其中,淄博市、济南市、北京市降幅最大,分别下降了85.2%、74.6%和65.2%,表明烟花禁限放措施起到了显著的污染削峰作用;与城区相比,周边郊县ρ(PM2.5)显著高于城区,呈“农村包围城市”的现象,说明城区监测点位受到郊县等周边地区烟花燃放的传输影响.研究显示,虽然城区烟花禁限放措施起到了显著的削峰作用,但城区监测点位空气质量仍受到郊县等周边地区烟花燃放的传输影响,导致大气重污染的发生.   相似文献   

11.
为研究郑州市细颗粒物(PM2.5)时空分布差异及秋冬季管控措施影响,于2017年秋季至2018年冬季选取5个点位采集PM2.5样品并进行组分分析,利用正定矩阵因子分解模型(PMF)解析PM2.5污染来源,评估郑州市秋冬季管控效果,并基于源解析结果为下一阶段秋冬季管控提供支撑.郑州市PM2.5浓度冬季 > 秋季 > 春季 > 夏季,郑州大学(ZZU)PM2.5浓度最高[(83.1±44.7)μg·m-3],高出平均浓度[(76.5±46.1)μg·m-3]的8.7%.SO42-、NO3-和NH4+在9种水溶性离子中平均占比高达22.5%、43.6%和23.4%,受燃煤影响Cl-两年冬季占比高于其他季节(6.7%和6.6%).秋冬季二次有机碳(SOC)污染严重,浓度占有机碳的一半以上,2018年市监测站(JCZ)和ZZU点位SOC/OC比2017年有所下降,但其他3个点位大幅度升高,说明这些地区不同的排放基础应对管控措施的表现不尽相同.重构结果表明硫酸盐占比在夏季最高(25.0%),硝酸盐两年秋季占比较高(23.1%和25.1%),地壳物质春季占比最高(18.2%),二次有机气溶胶(SOA)冬季最高(14.1%和20.5%);JCZ和航空港(HKG)点位SOA贡献较大(16.9%和16.4%),ZZU点位受到一次有机气溶胶和地壳物质影响较大(14.3%和12.1%).PMF结果表明二次无机盐(37.5%)、SOA(15.4%)、交通源(14.9%)、工艺过程源(4.8%)、燃煤源(16.0%)、扬尘源(6.5%)和生物质燃烧源(2.8%)是郑州市PM2.5的主要污染源,SOA和燃煤源在冬季贡献最大,扬尘源和生物质燃烧源在春季和秋季贡献较大;市区点位JCZ、ZZU和临近机场的HKG受到交通源的影响高于其他点位,非市区点位新密和HKG受到生物质燃烧源的影响较大.对比两年秋冬季,2018年秋冬季SOA、交通源和工艺过程源的贡献有所升高,而二次无机盐、燃煤源和生物质燃烧源有所下降,冬季扬尘源也有所下降.结果表明秋冬季管控措施对一次源中的扬尘、燃煤和工业效果显著,同时SOA前体物挥发性有机物是进一步减排管控的方向.  相似文献   

12.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65.4%),主要来源为燃煤(24.4%)和工业工艺源(23.7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州和行唐区县大气排放源管理,减少局地传输影响.  相似文献   

13.
山地型城市冬季大气重污染过程特征及成因分析   总被引:5,自引:5,他引:0  
以阳泉市2018年12月26日~2019年1月20日发生的典型大气重污染过程为例,研究了山地型城市冬季大气重污染过程特征及成因.结果表明,重污染发生时段首要污染物为PM2.5,水溶性离子和碳质组分是PM2.5主要组分,其中二次离子SO42-、NO3-和NH4+是主要水溶性离子成分(共占离子组分的87.7%),二次有机碳(SOC)是碳质组分的主要成分(71.6%).二次离子在重污染发生时的浓度较发生前增加5.3倍,是导致PM2.5快速增长的重要组分.气象条件分析显示,PM2.5及其主要组分皆与相对湿度呈显著正相关关系而与风速呈显著负相关,随相对湿度增加以及平均风速降低,污染程度逐渐加重.山地型城市相对湿度较高、温度变化幅度大等气象特征使二次污染物的生成加快,是导致PM2.5污染程度快速加重的主要原因.另外,山地型城市相对封闭的地形导致的平均风速降低使得大气污染物扩散条件相对较差是污染物累积的原因之一.PMF模型解析结果为:二次源(46.0%)对PM2.5贡献显著,其次为燃煤源(32.6%)、机动车源(19.8%)和扬尘源(1.6%).因此,山地型城市更应该重视对二次组分,特别是二次离子形成的前体物的管控.  相似文献   

14.
选取2015~2021年长三角地区4个代表性城市污染物浓度,利用机器学习的气象归一化方法解耦气象因素对污染物的影响,量化气象和排放对污染物浓度变化的贡献.结果表明,长三角地区PM2.5、 NO2和SO2排放下降影响贡献较大(57.2%~68.2%、 80.7%~94.6%和81.6%~96.1%),抵消了气象因素带来的不利影响,致使污染物浓度降低.而气象条件对于臭氧日最大8 h(MDA8_O3)的贡献强于其他污染物(23.5%~42.1%),其中气象因素促进污染物浓度上升(4.7%),排放变化促进污染物浓度下降(-3.2%). NO2和MDA8_O3在2019~2021年降幅更快,主要原因是2019~2021年排放起到较2015~2018年更强的促进污染物浓度降低作用.PM2.5和SO2在2019~2021年的降幅较2015~2021年整体有所减弱.基于机器学习的气象归一化方法可以解耦气象对污染物的影响,量化排放...  相似文献   

15.
廊坊市大气污染特征与污染物排放源研究   总被引:2,自引:0,他引:2  
通过廊坊市2014年12个监测站点的大气污染物监测数据,分析了廊坊市大气污染的主要特征,包括空气质量水平、大气污染的季节与空间分布.结果发现,虽然与2013年相比2014年空气质量有所改善,但12个站点空气质量超标均十分严重.秋季、冬季与春季PM_(2.5)为主要的空气污染物,夏季O3日最大8 h平均浓度频繁超标,需要引起重视.为实现廊坊市空气质量模拟,制定最优空气质量改善政策,基于污染源普查、环境统计数据,编制了廊坊市主要大气污染物排放清单.工业部门中,电力、热力生产和供应业、黑色金属冶炼及压延加工业是SO_2、NO_x和PM_(2.5)的重要来源.VOCs则主要来自于化学原料和化学制品制造业、黑色金属冶炼及压延加工业、食品制造业.另外,廊坊全市道路扬尘和建筑施工扬尘污染贡献了PM2.5的38.6%,但扬尘的管理十分薄弱.同时结果表明,廊坊市黄标车排放在交通源排放中比重较高.因此,需要对上述重点排放源进行有效控制,从而改善廊坊市空气质量.  相似文献   

16.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

17.
安阳市典型工业源PM2.5排放特征及减排潜力估算   总被引:1,自引:0,他引:1  
为探究安阳市PM_(2. 5)排放特征,通过现场调查对安阳市工业源活动水平和控制技术信息进行收集,采用合理的估算方法、排放因子,建立了安阳市2016年工业源PM_(2. 5)排放清单,并利用地理信息系统(GIS)技术进行空间分配.基于典型行业超低排放改造和煤炭压减要求设置3种情景,估算了2020年安阳市工业源PM_(2. 5)减排潜力.结果表明,安阳市2016年工业源PM_(2. 5)排放总量为81 071. 13 t;有色冶金、钢铁和建材行业是安阳市PM_(2. 5)主要贡献源,分别占总排放量的45. 43%、25. 74%和18. 00%;安阳市各乡镇排放差异突出,PM_(2. 5)排放主要集中在市区及林州市和安阳县,且以安阳市区排放量最为突出,而安阳市区的4个辖区的排放强度差异更为巨大;通过设定不同控制情景,估算2020年安阳市PM_(2. 5)减排潜力分别为398. 72、11 623. 87和14 072. 27 t,分别占2016年工业源排放总量的0. 49%、14. 34%和17. 22%.可见,安阳市PM_(2. 5)具有较大减排潜力,超低排放改造和煤炭压减对安阳市PM_(2. 5)减排具有重要意义.  相似文献   

18.
针对湖南省臭氧(O3)污染加剧但是相关的研究较为缺乏的现状,以长沙市为研究区域,基于观测数据,结合气象校正、基于经验的模型(EOF)和绝对得分受体模型(APCs),识别量化了2018~2020年气象、本地光化学生成和外围传输对O3污染相对贡献的影响,分析了2018~2019年和2019~2020年O3趋势变化的主控因素.结果表明,短期范围内,气象条件是O3污染事件发生的重要诱发因素.对长沙市整体来说,在时间上,2018~2019年期间,气象和本地前体物排放影响作用的增强是O3浓度升高的关键驱动因子.2019~2020年期间,气象、本地前体物排放和外围传输影响均呈现下降的趋势,是导致O3浓度降低的重要影响因素.空间上,2018~2020年时间段,气象、本地前体物排放和外围传输主要影响区域分别为长沙市偏东、偏北和偏南部区域.其中,外围传输的作用持续减弱,2018~2019年期间,长沙市北部天然源排放水平的升高使得O3浓度上升,南部区域NO...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号