首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper computes efficient industrial waste and air pollutants abatements for 47 regions in Japan for the period 1992–2002. The variable-returns-to-scale (VRS) data envelopment analysis (DEA) with a single output (real GDP) and seven inputs (labor, real public capital stock, real private capital stock, industrial waste, sulfur oxide, nitrogen oxide, and soot and dust) is used to compute target wastes of each region for each year. The efficient abatement ratios of each region in each year are obtained by comparing the actual to the target amount of a pollutant. Our major findings are: (1) Most regions in Japan have significant room to reduce their pollution since there is a wide gap between efficient and inefficient regions; (2) For each air pollutant, approximately 25–33% of Japan's prefectures can reduce their output by more than 50% without harming regional GDP, and approximately one-third of prefectures can reduce industrial waste more than 30%; (3) Hokkaido is the least efficient region for all years studied and for all waste and pollutants, and target abatement ratios there drastically worsened in the last two sample years; (4) Tokyo, Saitama, Yamanashi, Shiga, Nara, and Tottori are efficient with respect to each type of industrial waste and pollution throughout the study period; (5) many regions in the bottom quartile with respect to real per capita income have significant room to reduce their waste and pollution output; and (6) many regions where energy-intensive industries dominate produce excessive amounts of waste and air pollution compared to other regions.  相似文献   

2.
Industrial SO2 is the most important air pollutant in China. This paper outlines the technological impacts on industrial SO2 emissions in China in terms of: amount, intensity, structure of energy consumption and structure of energy-intensive industries. It shows that industrial SO2 emissions have linear growth alongside increases in energy consumption, particularly the rise in coal consumption. The contribution of technological factors to decreases in the intensity of energy consumption is 25%, while the structural factor is 75%. The power industry accounts for 52.6% of total industrial SO2. Optimisation of the structure of energy consumption can reduce SO2 emissions by 1.98 million tonnes per year. We propose the following technological strategies for industrial SO2 abatement: adjustment of the system and structure of thermal power generating units, acceleration of flue gas desulphurisation projects, transformation of industrial structures, development of eco-industries and a reduction in energy consumption per unit product. In addition, an effective way to abate industrial SO2 emissions is to promote governance strategies to stricly enforce SO2 emission standards, conduct emission trading, and formulate incentives for encouraging cleaner production and clean energy development.  相似文献   

3.
This work evaluates the influence of energy consumption on the future air quality in Beijing, using 2000 as the base year and 2008 as the target year. It establishes the emission inventory of primary PM10, SO2 and NOx related to energy utilization in eight areas of Beijing. The air quality model was adopted to simulate the temporal and spatial distribution of each pollutant concentration in the eight urban areas. Their emission, concentration distribution, and sectoral share responsibility rate were analyzed, and air quality in 2008 was predicted. The industrial sector contributed above 40% of primary PM10 and SO2 resulting from energy consumption, while vehicles accounted for about 65% of NOx. According to the current policy and development trend, air quality in the eight urban areas could become better in 2008 when the average concentrations of primary PM10, SO2 and NO2 related to energy utilization at each monitored site are predicted to be about 25, 50 and 51 μg/m3, respectively.  相似文献   

4.
The recent global financial crisis has highlighted the need for balanced and efficient investments in the reduction of the greenhouse effect caused by emissions of CO2 on a global scale. In a previous paper, the authors proposed a mathematical model describing the dynamic relation of CO2 emission with investment in reforestation and clean technology. An efficient allocation of resources to reduce the greenhouse effect has also been proposed. Here, this model is used to provide estimates of the investments needed in land reforestation and in the adoption of clean technologies for an optimum emission and abatement of CO2, for the period of 1996–2014. The required investments are computed to minimize deviations with respect to the emission targets proposed in the Kyoto Protocol for European Countries. The emission target can be achieved by 2014 with investments in reforestation peaking in 2004, and a reduction of the expected GDP of 42%, relative to 2006. Investments in clean technology should increase between 2008 and 2010 with maximum transfer figures around 70 million American dollars. Total (cumulative) costs are, however, relatively high depending on the price of carbon abatement and the rate at which the expected CO2 concentration in the atmosphere should be reduced. Results highlight the advantages for policy makers to be able to manage investments in climate policy more efficiently, controlling optimum transfers based on a portfolio of actions that tracks a pre-defined CO2 concentration target.  相似文献   

5.
Motorized traffic is among the biggest CO2-emitting sources and is additionally dominating NOx emission. Engine technology shifts are approaching, while automobiles developed in Germany and Europe are exported worldwide together with the European emission thresholds for cars. The Diesel car boom induced by EU commission, national EU governments and car industry is accordingly analyzed for sustainability and its effects on environment. German CO2 emission reduction numbers by motorized traffic, as claimed by the government, are questioned. Radiative forcing by soot (black carbon) Diesel car emissions is added on the CO2 emissions by fuel combustion. Diesel cars without particle filters are found to cause an atmospheric warming. Modelled and measured NOx emission data are assessed to mismatch considerably. In spite of an ambitious national NOx reduction plan there is excess NOx emission by the German and European Diesel car boom. In this context environmental sustainability of battery electric vehicles (BEV) is investigated. Direct (by car) und indirect (by power plant) emissions (CO2, NOx, PM10, SO2) of cars with internal combustion engines (ICE) and BEVs, respectively, are calculated and compared. CO2-ecoanalysis revealed advantages for BEVs even operated with current German electricity mix based on around 15?% renewable sources.  相似文献   

6.
Actions to slow atmospheric accumulation of greenhouse gases also would reduce conventional air pollutants yielding “ancillary” benefits that tend to accrue locally and in the near-term. Using a detailed electricity model linked to an integrated assessment framework to value changes in human health, we find a tax of $25 per metric ton of carbon emissions would yield NOx-related health benefits of about $8 per metric ton of carbon reduced in the year 2010 (1997 dollars). Additional savings of $4–$7 accrue from reduced investment in NOx and SO2 abatement in order to comply with emission caps. Total ancillary benefits of a $25 carbon tax are $12–$14, which appear to justify the costs of a $25 tax, although marginal benefits are less than marginal costs. At a tax of $75, greater total benefits are achieved but the value per ton of carbon reductions remains roughly constant at about $12.  相似文献   

7.
Energy consumption is a major cause of air pollution in Beijing, and the adjustment of the energy structure is of strategic importance to the reduction of carbon intensity and the improvement of air quality. In this paper, we explored the future trend of energy structure adjustment in Beijing till 2020, designed five energy scenarios focusing on the fuel substitution in power plants and heating sectors, established emission inventories, and utilized the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) to evaluate the impact of these measures on air quality. By implementing this systematic energy structure adjustment, the emissions of PM10, PM2.5, SO2, NO x , and non-methane volatile organic compounds (NMVOCs) will decrease distinctly by 34.0%, 53.2%, 78.3%, 47.0%, and 30.6% respectively in the most coalintensive scenario of 2020 compared with 2005. Correspondingly, MM5-Models-3/CMAQ simulations indicate significant reduction in the concentrations of major pollutants, implying that energy structure adjustment can play an important role in improving Beijing??s air quality. By fuel substitution for power plants and heating boilers, PM10, PM2.5, SO2, NO x , and NMVOCs will be reduced further, but slightly by 1.7%, 4.5%, 11.4%, 13.5%, and 8.8% respectively in the least coal-intensive scenario. The air quality impacts of different scenarios in 2020 resemble each other, indicating that the potential of air quality improvement due to structure adjustment in power plants and heating sectors is limited. However, the CO2 emission is 10.0% lower in the least coal-intensive scenario than in the most coal-intensive one, contributing to Beijing??s ambition to build a low carbon city. Except for energy structure adjustment, it is necessary to take further measures to ensure the attainment of air quality standards.  相似文献   

8.
The trends of yearly emission of sulphur dioxide are analysed for the European Union during a period of time from 1985 to 1997. To achieve the above matter the method of the least squares model has been used. Major SO2emissions were found in Germany, the United Kingdom, Spain, Italy and France. However, high SO2emissions by km2were found in Germany, the United Kingdom and Belgium. The most remarkable results of the trend analysis appears as follows: 12 countries with significant downward trends, 2 countries with significant upward trends and 1 country with no significant trend. A decreasing trend is evident for the most part of the E.U., although Portugal and Greece generated significant increasing trends of SO2emission for the mentioned year period.  相似文献   

9.
We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.
  相似文献   

10.
Atmospheric concentration of nitrous oxide (N2O), a greenhouse gas (GHG), is rising largely due to agriculture. At the plot scale, N2O emissions from crops are known to be controlled by local agricultural practices such as fertilisation, tillage and residue management. However, knowledge of greenhouse gas emissions at the scale of the cropping system is scarce, notably because N2O monitoring is time consuming. Strategies to reduce impact of farming on climate should therefore be sought at the cropping system level. Agro-ecosystem models are simple alternative means to estimate N2O emissions. Here, we combined ecosystem modelling and field measurements to assess the effect of agronomic management on N2O emissions. The model was tested with series of daily to monthly N2O emission data. It was then used to evaluate the N2O abatement potential of a low-emission system designed to halve greenhouse gas emissions in comparison with a system with high productivity and environmental performance. We found a 29 % N2O abatement potential for the low-emission system compared with the high-productivity system. Among N2O abatement options, reduction in mineral fertiliser inputs was the most effective.  相似文献   

11.
The greenhouse gases subject to emission reduction commitments under the UN Climate Convention include the fluorinated compounds sulphur hexafluoride (SF6), perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs). The present study projects the emissions of these gases in Germany over the 1995–2010 period, with and without additional emission abatement efforts In the business-as-usual scenario, total emissions of the three fluorinated gases rise over the 1995–2010 period from 11,1 to 27.4 million tonnes CO2 equivalent. This rise is attributable to 72% to HFCs, used above all for refrigeration and stationary air-conditioning, for mobile air-conditioning, for blowing extruded polystyrene (XPS) foam and for one-component polyurethane (PU) foam. Soundproof glazing is the largest SF6 emission sector. Most PFC emissions come from semiconductor manufacturing and aluminium smelting. The reduction scenario does not achieve a stabilisation of fluorinated gas emissions either. The rate of growth is only slowed, with 11.1 million tonnes CO2 equivalent in 1995 growing to 14.9 million in 2010. The measures proposed to attenuate emissions growth are: mandatory equipment maintenance in refrigeration and stationary air-conditioning, refrigerant substitution of HFCs by CO2 in mobile air-conditioning, partial HFC substitution by CO2 in XPS foam blowing, 95% HFC substitution by flammable hydrocarbons in one-component PU foam. Complete SF6 phase-out is considered to be feasible in soundproof glazing. The PFC emissions of the semiconductor industry can be cut by 85% by new chamber cleaning technologies.  相似文献   

12.
Emission patterns of NOx and S‐compounds are analyzed to study their influence on the concentrations of SO2, NOx, sulphate and nitrate in the air. Air mass trajectories, emission inventories and cluster analysis are used to define the emission patterns.

The scheme that characterized most of the days is defined by low emissions from 48 hours until 18 hours before the measurements and it produces average concentrations. High concentrations are due to emission peaks. The time between these emission peaks and the measurement determines the importance of the emission peak on the concentration.  相似文献   

13.
Ambient PM2.5 samples were collected at four sites in Xiamen, including Gulangyu (GLY), Hongwen (HW), Huli (HL) and Jimei (JM) during January, April, July and October 2013. Local source samples were obtained from coal burning power plants, industries, motor vehicles, biomass burning, fugitive dust, and sea salt for the source apportionment studies. The highest value of PM2.5 mass concentration and species related to human activities (SO4 2–, NO3 , Pb, Ni, V, Cu, Cd, organic carbon (OC) and elemental carbon (EC)) were found in the ambient samples from HL, and the highest and lowest loadings of PM2.5 and its components occurred in winter and summer, respectively. The reconstructed mass balance indicated that ambient PM2.5 consisted of 24% OM (organic matter), 23% sulfate, 14% nitrate, 9% ammonium, 9% geological material, 6% sea salt, 5% EC and 10% others. For the source profiles, the dominant components were OC for coal burning, motor vehicle, biomass burning and sea salt; SO4 2– for industry; and crustal elements for fugitive dust. Source contributions were calculated using a chemical mass balance (CMB) model based on ambient PM2.5 concentrations and the source profiles. GLY was characterized by high contributions from secondary sulfate and cooking, while HL and JM were most strongly affected by motor vehicle emissions, and biomass burning and fugitive dust, respectively. The CMB results indicated that PM2.5 from Xiamen is composed of 27.4% secondary inorganic components, 20.8% motor vehicle emissions, 11.7% fugitive dust, 9.9% sea salt, 9.3% coal burning, 5.0% biomass burning, 3.1% industry and 6.8% others.
  相似文献   

14.
A study has been conducted over a period of one year on measurements of air pollution in the Shuaiba Industrial Area (SIA) of Kuwait. The study included analysis of pollutant behaviour relative to the wind speed and direction. SIA comprises several large scale industries including three petroleum refineries, two power plants, two fertilizer plants, a cement plant, a chlorine and soda plant, a commercial harbour and two large oil loading terminals. Measurements of 15 parameters have been carried out every 5 minutes using a mobile laboratory fitted with an automatic calibrator and a data storage system. The pollutants studied include methane, non‐methane hydrocarbons (NMHC), carbon monoxide, carbon dioxide, nitrogen oxides (NO, NO2, and NO x ), sulphur dioxide, ozone and suspended dust. Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, relative humidity, solar radiation, and barometric pressure. The air quality data collected using the mobile laboratory have been used to calculate the diurnal and monthly variations in the major primary and secondary pollutants. Distribution levels of these pollutants relative to wind direction and speed have also been used in the analysis. The results show large diurnal variations in some pollutant concentrations. Generally, two types of concentration variations have been found, depending on whether the species is a primary or a secondary pollutant. Diurnal variations with two maxima were observed in the concentrations of primary pollutants including NO, SO2, NMHC, CO and suspended dust, whereas a single maximum was observed for secondary pollutants such as O3and NO2. The monthly variations of SO2and NO x showed maximum values during the warm months. However, ozone showed a quite marked seasonal variation with maxima during spring and late summer and a minimum during the early summer. The results also indicated a common source for NO x , SO2, NMHC, CO and suspended dust to the North‐West (NW) of the monitoring station. Moreover for NO x and SO2, another less significant source is to the South‐South‐West (SSW) and South‐West (SW) of the monitoring station.  相似文献   

15.
Many important environmental policies involve some combination of emission controls and ambient environmental quality standards, for instance SO2 emissions are capped under Title IV of the U.S. Clean Air Act Amendments while ambient SO2 concentrations are limited under National Ambient Air Quality Standards (NAAQS). This paper examines the relative performance of emissions standards and ambient standards when the natural environment provides stochastic environmental services for assimilating pollution. For receiving media characterized by greater dispersion in the distribution of environmental services, the optimal emissions policy becomes more stringent, whereas the optimal ambient policy generally becomes more lax. In terms of economic performance, emissions policies are superior to ambient policies for relatively non-toxic pollutants, whereas ambient standards welfare dominate emissions standards for sufficiently toxic pollutants. In the case of combined policies that jointly implement emissions standards and ambient standards, we show that the optimal level of each standard relaxes relative to its counterpart in a unilateral policy, allowing for greater emissions levels and higher pollution concentrations in the environmental medium.  相似文献   

16.
Many important environmental policies involve some combination of emission controls and ambient environmental quality standards, for instance SO2 emissions are capped under Title IV of the U.S. Clean Air Act Amendments while ambient SO2 concentrations are limited under National Ambient Air Quality Standards (NAAQS). This paper examines the relative performance of emissions standards and ambient standards when the natural environment provides stochastic environmental services for assimilating pollution. For receiving media characterized by greater dispersion in the distribution of environmental services, the optimal emissions policy becomes more stringent, whereas the optimal ambient policy generally becomes more lax. In terms of economic performance, emissions policies are superior to ambient policies for relatively non-toxic pollutants, whereas ambient standards welfare dominate emissions standards for sufficiently toxic pollutants. In the case of combined policies that jointly implement emissions standards and ambient standards, we show that the optimal level of each standard relaxes relative to its counterpart in a unilateral policy, allowing for greater emissions levels and higher pollution concentrations in the environmental medium.  相似文献   

17.
Zhang  Chao  Li  Sha  Guo  Gan-lan  Hao  Jing-wen  Cheng  Peng  Xiong  Li-lin  Chen  Shu-ting  Cao  Ji-yu  Guo  Yu-wen  Hao  Jia-hu 《Environmental geochemistry and health》2021,43(9):3393-3406

Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.

  相似文献   

18.

The ambient air particulates pollutants of total suspended particulates (TSP) and PM2.5 were collected by using PS-1 and Wilbur PM2.5 sampler, simultaneously during the year of 2015–2017 at a photoelectric factory in Science Park of central Taiwan. And those of the ambient air atmospheric metallic elements (Cr, Mn, Ni, Cu, Zn, Pb) concentrations which attached on the TSP and PM2.5 were analyzed by using inductively coupled plasma optical emission spectrometer. In addition, identifying anthropogenic and natural pollutants sources were conducted by using the enrichment factor (EF) and principal component analysis (PCA) methods. The results indicated that the average TSP and PM2.5 concentrations were ranked highest in winter season, while summer season was ranked lowest during the year of 2015–2016. In addition, the average highest metallic element concentrations were occurred in winter season for both TSP and PM2.5 during the year of 2015–2016, while the average lowest metallic elements concentrations in TSP and PM2.5 were also occurred in winter season during the year of 2016–2017. Moreover, the EF analysis results showed that the metallic element Zn came from anthropogenic emission source. As for metallic element Mn, the results showed that metallic element Mn was mainly attributed to natural emission in this study. Finally, the PCA results showed that metallic elements Cr, Zn and Pb were the dominant emissions metallic elements in this study. As for PM2.5, the results showed that the metallic elements Cr, Cu and Pb were the dominant emissions metallic elements at this HPB sampling site.

  相似文献   

19.
为研究武汉市道路尘中碳组分污染特征及来源,于2018年5月在武汉市青山区采集道路尘样品,用热光碳分析仪测定样品中有机碳(OC)、元素碳(EC)、烟炱(soot)和焦炭(char)含量,并使用特征比值法、相关分析及主成分分析法对道路尘碳组分污染特征和来源进行探讨分析.结果表明,道路尘中OC、EC、soot和char含量平均值分别为1.29、2.21、2.04、0.17 g·kg-1,说明不同碳组分含量存在较大的空间变异性.相关性分析表明OC和EC的来源存在一定差异,且EC主要贡献来源是soot.OC;EC和char;soot比值和主成分分析结果表明,武汉市青山区道路尘中碳组分主要来源于机动车尾气和燃煤排放,也可能受到生物质燃烧的影响.  相似文献   

20.
To understand the size-resolved aerosol ionic composition and the factors influencing secondary aerosol formation in the upper boundary layer in South Central China, size-segregated aerosol samples were collected using a micro-orifice uniform deposit irnpactor (MOUDI) in spring 2009 at the summit of Mount Heng (1269 m asl), followed by subsequent laboratory analyses of 13 inorganic and organic water-soluble ions. During non- dust-storm periods, the average PM1.8 concentration was 41.8 μg·m^-3, contributing to 55% of the PM10. Sulfates, nitrates, and ammonium, the dominant ions in the fine particles, amounted to 46.8% of the PM1.8. Compared with Mount Tai in the North China Plain, the concentrations of both fine and coarse particles and the ions contained therein were substantially lower. When the air masses from Southeast Asia prevailed, intensive biomass burning there led to elevated concentrations of sulfates, nitrates, ammonium, potassium, and chloride in the fine particles at Mount Heng. The air masses originating from the north Gobi brought heavy dust storms that resulted in the remarkable production of sulfates, ammonium, methane sulfonic acid, and oxalates in the coarse particles. Generally, the sulfates were primarily produced in the form of (NH4)2SO4 in the droplet mode via heterogeneous aqueous reactions. Only approximately one-third of the nitrates were distributed in the fine mode, and high humidity facilitated the secondary formation of fine nitrates. The heterogeneous formation of coarse nitrates and ammonium on dry alkaline dust surfaces was found to be less efficient than that on the coarse particles during non-dust-storm periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号