首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卫星遥感技术是深入了解大气二氧化碳(CO2)时空分布特征的重要手段之一,由于探测技术的限制,目前基于卫星遥感观测数据反演的CO2产品的空间覆盖度较低,数据缺失严重,不足以反映CO2浓度的空间分布情况。现基于轨道碳观测卫星-2 (OCO-2)、哨兵5P (Sentinel-5P)、美国CO2同化模拟系统(Carbon Tracker)和欧洲中期天气预报中心第5代(ERA-5)气象再分析数据,结合时间序列拟合估算模型和随机森林算法,重构了2019—2022年中国地区高精度(0.05°×0.05°)大气CO2平均干空气混合比(XCO2),分析了中国地区CO2时空变化特征。与OCO-2和Carbon Tracker对比结果显示,重构得到的XCO2与OCO-2的观测结果一致性更高,均方根误差为1.05 ×10-6,决定系数高达0.96,可以在较高空间分辨率上体现中国地区XCO2的时空分布情况。基于重构的XCO2数据得知,中国地区XCO2呈现明显的季节性波动,XCO2呈冬春高、夏秋低的特征;2019—2022年,中国地区XCO2呈现逐年上升的趋势,增长率达到(2.41±0.01)×10-6/a,但近年来增长速率有所降低;从空间分布来看,中国东部、北部、中部地区的XCO2显著高于其他地区,且增长率也较高;进一步分析中国典型经济区的XCO2发现,杭州、天津、成都的XCO2在各经济区内的增长最为迅速。研究成果可为碳监测研究、碳排放清单验证、碳排放管理、温室气体减排等研究提供重要的数据支撑。  相似文献   

2.
随着卫星遥感技术的发展,城市内部的二氧化碳柱浓度(XCO2)时空特征逐渐能够被识别。本研究基于轨道碳观测卫星(OCO-3)快拍(SAM)模式XCO2观测数据,探讨了上海市2020—2022年XCO2的时空分布特征以及该数据对于火电厂CO2烟羽信号来源识别的能力。结果表明,上海市XCO2呈现春季>冬季>夏季的特征,上海市XCO2年均值为418.3×10-6,高于华东地区的年平均值。从XCO2空间分布差异来看,中部和东北部是上海冬季XCO2的高值区域,这主要是由于城市中部人口密集,北部沿江区域大型电厂较为集中,在冬季盛行风西北风的作用下,CO2被传输至东部沿江多个行政区域。此外,结合近地面风场、CO2人为排放清单、电厂点源信息、对流层监测仪器(TROPOMI)卫星观测数据等,证实了OCO-3快拍模式具有探测到重点点源信号的能力。  相似文献   

3.
应用生命周期评价法(LCA)对条斑紫菜养殖加工行业进行了全周期的碳足迹分析,明确了各环节中碳排放源的种类和数量。结果表明,100亩条斑紫菜养殖加工过程中碳排放总量为1.25×105~2.47×105 kg CO2,远高于条斑紫菜100亩养殖形成的可移出碳汇量(9.43×103 kg CO2)。基于全产业链的分析,条斑紫菜产业尚不是一个碳汇产业。养殖阶段碳排放量最大,排放源主要来自石油化工材料的大量使用。二次加工阶段碳排放量仅次于养殖阶段,排放源主要来自纸壳包装和塑料包装的大量使用。在一次加工阶段,热源的使用是影响该阶段碳排放的主要影响因素,生物质燃料是碳排放量最低的热源形式。  相似文献   

4.
基于碳监测网络测算城市人为碳排放通量,需要二氧化碳(CO2)格点化排放清单作为反演计算的先验信息。现有格点化清单大多针对全球或全国尺度编制,排放源的空间位置不确定性高,不足以支撑城市碳监测工作。以杭州市为例,构建了高空间分辨率(1 km)、分部门(工业能源、工业过程、交通等6类排放部门)的城市CO2格点化排放清单,并对其不确定性进行了表征。该格点化清单基于中国城市温室气体工作组编制的《中国城市二氧化碳排放数据集(2020)》,依据848个点源的精确位置信息和一系列空间代理数据,对各部门的城市CO2排放量进行格点化分配,得到杭州市高分辨率排放清单模型。与现有清单,如欧洲开发的全球大气研究排放数据库(EDGAR)、清华大学开发的中国多尺度排放清单模型(MEIC)等相比,本研究编制的格点化清单能合理地反映杭州市CO2排放的空间格局,包括人口、路网密集的市中心,萧山区和钱塘区的工业园区,钱塘江中上游沿岸的水泥企业等高排放热点,可以作为杭州市CO2反演的人为源先验清单。  相似文献   

5.
利用加速器质谱技术测定大气14CO2以示踪大气化石源CO2成为当前减污降碳工作的热点。该文从加速器质谱14C分析基础出发,系统介绍了加速器质谱的工作原理、大气样品的采集及纯化、石墨化样品的制备和测定,阐述了大气碳监测领域14 CO2测试的研究进展。随着加速器质谱技术的不断发展,大气14CO2的研究将会更加广泛和深入,有助于进一步认识大气化石源CO2的来源,更有针对性地开展减污降碳工作。未来应统一制定14CO2监测方法标准,规范操作流程和质控手段,完善实验仪器配套设施,加快提升监测能力和水平。  相似文献   

6.
以2020年1月—2021年9月对流层观测仪(TROPOMI)卫星观测资料反演获取的对流层甲醛(HCHO)、二氧化氮(NO2)柱浓度数据为依据,采用统计方法分析了扬州市HCHO和NO2柱浓度的时空分布特征。结果表明,扬州市对流层HCHO、NO2平均柱浓度分别为903.01×1013, 633.77×1013mole/cm2;受太阳紫外辐射影响,HCHO柱浓度变化特征表现为6月最高、1月最低;受气象条件和人为排放强度影响,NO2则表现为1月最高、8月最低。2021年1—9月扬州市对流层HCHO、NO2柱浓度月均值同比2020年分别增长4.0%,40.6%。空间分布特征显示,扬州市对流层HCHO和NO2浓度高值区主要分布在扬州市南部,且浓度高值区域与重点排污企业分布情况较为一致,多为电力供热、工业锅炉、冶金、石化与化工、表面涂层等行业。相关性分析显示,对流层HCHO与气温、臭氧浓度呈显著正相关,而NO2与气温、臭氧浓度呈显著负相关。  相似文献   

7.
北京市废弃物处理温室气体排放特征   总被引:1,自引:0,他引:1  
基于《2006年IPCC国家温室气体清单指南》推荐的方法,结合《省级温室气体清单编制指南(试行)》和《城市温室气体核算工具指南》的部分数据与核算范围,针对固体废弃物填埋、焚烧和废水处理等过程,核算了北京市2005-2014年废弃物处理过程中温室气体总排放量。结果表明:2005-2014年北京市废弃物处理过程温室气体总排放量呈逐渐上升趋势,2014年温室气体总排放量比2005年增长98%。10年间,固体废弃物填埋过程一直是最主要的温室气体排放源,到2014年排放量达到最大,为416.3×104t二氧化碳当量(CO2e)。废弃物填埋、废水处理和废弃物焚烧过程占总排放量的比例分别为78.5%(CO2e质量分数,下同)、13.5%和8%。结合已有研究,系统优化国内7个典型城市废弃物处理温室气体排放因子,核算7个城市排放情况,并对比分析了北京市排放情况。  相似文献   

8.
工业化与城镇化交替演进使珠三角及其周边地区土地利用类型较为复杂。快速的城市化进程使城市建成区与大量村镇工业园区互相交错。这种变化势必会增加挥发性有机物(VOCs)在组分构成和空间分布上的复杂性,并对臭氧(O3)污染的时空变化产生影响。为厘清这种排放的空间异质性特征及其对O3污染分布的影响,分别选取可以代表清远市典型工业园区和城市建成区的站点开展观测研究。结果表明:工业园区和城市建成区VOCs浓度水平和污染特征有较大的空间差异,其中代表村镇工业园区的龙塘站VOCs日均浓度为30.42×10-9,高于代表城市建成区的技师学院站(17.32×10-9)。龙塘站二甲苯和甲苯的臭氧生成潜势(OFP)比技师学院站高57.6×10-9,且该值相当于技师学院站排名前10位物种OFP的总和。气象分析表明:2个站点之间并非彼此的上、下风向,而是共同受到局地气团的影响。源解析结果表明:源排放是造成这种空间异质性的内因,其中交通源对技师学院的贡献更高,而工业相关排放源对龙塘的贡献更高。该研究进一步比较了周边站点O3时间序列的一致性,并模拟2个站点的O3生成速率。研究发现O3在局地范围内变化较小,高VOCs排放的地点对局地O3有较高的贡献,局地内不同地点的O3生成过程也存在较大差异。据此,笔者提出O3污染防控建议:短期内可通过技术手段和观测数据发现O3污染的重要贡献点,并进行针对性的"散乱污"清理整治和涉VOCs行业综合整治,长期看应科学合理规划城市发展布局和产业布局,预留城市通风廊道,以有效减少O3污染。  相似文献   

9.
分别于2013年10月和2014年2月、5月、7月在贵阳市城区3个环境空气质量监测国控点位(南明区市监测站、云岩区黔灵公园马鞍山和观山湖区贵阳一中)进行PM10、PM2.5样品采集,并对10种水溶性离子(SO42-、NO2-、NO3-、NH4+、Cl-、F-、Na+、K+、Mg2+、Ca2+)的含量进行了分析。结果表明,研究时段内,贵阳市3个点位PM10、PM2.5平均质量浓度分别为(64.8±25.5)、(46.6±21.2)μg/m3。其中,云岩区黔灵公园马鞍山点位的颗粒物浓度最低,南明区市监测站点位最高。3个点位PM2.5平均浓度与PM10平均浓度的比值为0.719,表明贵阳市城区PM10中,PM2.5占主导地位。水溶性离子分析显示,SO42-、NO2-、NO3-、NH4+、Cl-、F-、Na+、K+主要分布在PM2.5中,Mg2+、Ca2+主要分布在PM10中。3个点位PM10和PM2.5中的水溶性离子均表现为SO42-、NH4+、Ca2+浓度较大,F-、NO2-较小,表明3个点位的污染源总体相同,且水溶性离子占PM10、PM2.5含量的比例达33.6%~48.1%。贵阳市城区大气中的SO2转化率在5月、7月、10月较高,2月最低,主要是由于5月、7月、10月的高温、高湿、强辐射环境条件促进了SO2向SO42-的转化。阴阳离子平衡分析表明,贵阳市城区PM10、PM2.5呈现出偏碱性的特征。水溶性离子主成分分析表明,贵阳市城区PM10中的水溶性离子主要来源于城市扬尘、生物质燃烧尘、煤烟尘、建筑尘以及二次粒子,PM2.5中水溶性离子的来源与PM10较为相似。  相似文献   

10.
为深入研究闽江口富营养化机制,于1985—2021年在闽江入海断面开展了水质监测。采用结合局部加权回归散点平滑法(LOWESS)的季节性肯达尔检验(SK检验)对断面溶解无机氮(DIN)及其各组分浓度变化趋势进行分析,同时结合水文资料对入海通量进行估算。结果表明:DIN浓度范围为0.728~3.140 mg/L,在37年间整体呈上升趋势,但不显著。各组分中NO2-N和NH3-N浓度分别呈显著和极显著下降趋势,而NO3-N浓度呈极显著上升趋势。DIN组分中NO2-N和NH3-N比重不断减小,而NO3-N比重不断增大,目前已成为DIN的主要组成部分。DIN入海通量范围为3.59×104~14.85×104 t,在37年间缓慢增加,其各组分入海通量长期变化趋势同浓度变化类似。从长期来看,DIN及其各组分浓度的变化趋势主要受流域环境变化及下游福州市含氮废水排放影响,而在短期则受台风、降水等一些突发环境事件的影响较大。  相似文献   

11.
为了探究南京市细颗粒物(PM2.5)中金属元素的污染特征及健康风险,利用在线多金属分析仪采集并分析了2022年南京市PM2.5中10种金属元素的质量浓度,利用正定矩阵因子分解(PMF)模型进行金属元素的来源解析,并采用健康风险评价方法对其中5种重金属元素进行健康危害评估。结果表明,10种金属元素总的年均质量浓度为941.3 ng/m3,占PM2.5年均质量浓度的3.4%;其中,铁(Fe)、钾(K)、锌(Zn)3种金属年均质量浓度占比为91.2%。来源解析结果表明,污染物主要来源于土壤尘、燃煤、秸秆焚烧及烟花爆竹燃放、机动车尾气排放及机械磨损。健康风险评价结果表明,锰(Mn)、钒(V)、镍(Ni)、砷(As)4种重金属元素的危害商(HQ)均<1,均不存在非致癌风险;Ni、铅(Pb)的致癌风险(ECR)均<10-6,风险可控;As的致癌风险介于10-6 ~ 10-4之间,存在一定致癌风险。  相似文献   

12.
基于周口市2021年冬防期间(2021年10月1日—2022年3月31日)4个国控站点的在线小时数据和日均数据,利用统计和相关性分析等方法,研究了冬防期间污染要素的时空变化特征及其与主要气象因子之间的相关性。结果表明,周口市2021冬防期间空气质量达标率为64.8%,主要污染物为细颗粒物(PM2.5),其中1月的大气污染最严重,ρ(PM2.5)小时平均值为120 μg/m3,可吸入颗粒物(PM10)质量浓度小时最高值出现在3月沙尘期间,为591 μg/m3。各污染要素的变化整体趋同,但多个站点的ρ(SO2)和ρ(NO2)频繁出现短时高值,这一现象可能与局地细颗粒物污染相关,在后续大气污染防控中需引起重点关注。市运管处站的NO2和SO2质量浓度整体偏高,需关注周边机动车相关的颗粒物排放。此外,西北风和东风对于PM2.5污染传输的影响较大,气象不利条件下,需要加强管控,以有效保证空气质量达标。  相似文献   

13.
采用温室气体观测卫星(GOSAT) 傅里叶变换光谱仪(FTS)发布的CO2柱浓度L3级别数据集产品,利用TCCON地基站点的CO2柱浓度数据对卫星遥感数据进行验证,分析中国CO2柱浓度时空变化特征及其影响因素。研究结果表明,GOSAT卫星的CO2柱浓度产品精度较高,线性回归的r2为0.99,线性方程斜率为0.98,平均偏差为0.11 mg/L。中国CO2柱浓度呈现逐年增长的趋势,存在12个月的周期性季节性变化。2010、2020年区域年平均CO2柱浓度分别约为389.30、412.62 mg/L,增长了23.32 mg/L,年平均增长率大约为0.58%。中国区域大气CO2柱浓度的月变化存在明显的时空差异,最大值和最小值分别出现在4月和8月,2020年4月和8月的区域平均值分别为415.09、409.13 mg/L。中国区域CO2柱浓度从东部沿海向西部逐级递减,且呈现明显的季节性变化,夏季高值主要集中在东南部沿海地区,冬季高值主要集中在华北地区。  相似文献   

14.
基于2013—2022年全国339个地级及以上城市环境空气质量监测数据,分析了10年来环境空气质量变化特征。结果表明,2013—2022年全国环境空气质量持续改善,74个重点城市ρ(PM2.5)从2013年的68μg/m3降至2022年的29μg/m3,降幅为57.4%;一次排放污染物ρ(SO2)和ρ(NO2)10年降幅分别为71.9%和27.6%,ρ(CO)自2015年以来下降42.1%;全国ρ(O3)波动变化,受高温干旱影响,2019和2022年ρ(O3)为148和145μg/m3,其他年份ρ(O3)在137~139μg/m3波动。全国74个重点城市优良天数比例从2013年的65.7%上升至2022年的83.0%,相当于10年间每个城市优良天数增加65d;重污染天数比例从2013年的7.9%下降至2022年的0.6%,重污染天数减少90%。2020—2022年,90%以上的非沙尘重污染天出现在秋冬季(11—12月和1—2月),夏秋季O3超标问题对优良天数比例影响显著,建议进一步强化重点区域污染联防联控与重点城市大气污染防治,加强多污染物协同治理,推进空气质量持续改善。  相似文献   

15.
江苏省2013-2016年臭氧时空分布特征   总被引:1,自引:0,他引:1  
利用2013-2016年江苏省国控空气自动站获得的臭氧(O3)观测数据,探讨江苏省O3时空变化特征。结果表明,自2013年以来江苏省大气氧化剂OX (O3和NO2)和O3浓度呈逐年升高趋势,升高速率分别为0.98×10-9a-1和3.70 μg/(m3·a),O3增幅在我国处于较高水平。在O3空间分布上,东部沿海O3浓度相对高于西部内陆,O3浓度高值由沿海地区逐渐向内陆辐散,呈现出区域性O3污染。结合经验正交分解进行聚类统计检验,结果显示江苏省O3分区主要分为苏南、苏中和苏北3类,与江苏省经济发展水平表现出一定的同步性。  相似文献   

16.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

17.
根据南通市大气超级站的观测结果和气象因素,对南通市2019年10月29日—11月2日一次典型沙尘污染过程、颗粒物化学组分、颗粒物消光和退偏进行分析。结果表明,在沙尘影响期间,PM10小时峰值达311 μg/m3, ρ(Ca2+)较污染前上升了7.4倍;在沙尘颗粒物碱性环境条件下,二次组分OM和NO-3的快速生成,浓度分别较污染前上升了96.6 %和34.0 %;ρ(NO-3)/ρ(SO-24)污染中(2.5)高于污染前(1.7),ρ(EC)/ρ(PM2.5)污染中(4.2%)高于污染前(3.6%),受到明显的沙尘传输影响,而移动源排放也有一定贡献,在本地地面气压场较弱情况下,导致沙尘污染过程长时间持续。  相似文献   

18.
为了解山西省运城市大气细颗粒物(PM2.5)中重金属的污染特征和来源及其健康风险,于2020年10月15日—2021年2月14日对运城市大气PM2.5样品进行连续采集,使用微波消解-电感耦合等离子质谱法(ICP-MS)分析了样品中的铬(Cr)、锰(Mn)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、镉(Cd)和铅(Pb)等8种重金属元素的质量浓度。结果表明,采样期间,ρ(PM2.5)平均值为78.96μg/m3,采暖季ρ(PM2.5)为(79.84±43.79)μg/m3,高于非采暖季(76.54±23.97)μg/m3,采暖季和非采暖季ρ(PM2.5)均值均超过《环境空气质量标准》(GB 3095—2012)中的二级标准。富集因子法分析表明,Ni、Cu、Zn、As、Cd和Pb的富集因子均高于10,其中Cd元素的富集因子平均值达到1.089,表明受人为污染影响严重。主成分分析结果表明,运城市区秋冬季大气中重金属主要有3个来源,分别为混合燃烧源、机动车尾气源、工业排放源。健康风险评价结果显示,经手口摄入暴露强度最大,呼吸吸入暴露强度最小,皮肤接触暴露强度居中;儿童在3种暴露途径的总暴露剂量高于成人,儿童重金属暴露风险高于成人。各途径的非致癌风险强度叠加值<1,表明非致癌风险较小;但As、Pb的非致癌风险相对较高。4种重金属的呼吸吸入途径致癌风险程度排序为:As>Cr>Cd>Ni,单种重金属的致癌风险(TR)值以及重金属的总致癌风险(R)值均<10-6,表明本研究中重金属不具有致癌风险。  相似文献   

19.
通过对浙江省统一开展部署和行动,现场调查收集全省7 507个施工工地、3 923个堆场以及不同等级公路和城市道路的真实活动水平数据,并基于点源地理信息和路网信息图层,采用排放系数法和ArcGIS工具构建了浙江省2015年3 km×3 km高空间分辨率扬尘源排放清单。结果表明,2015年浙江省扬尘源PM10和PM2.5的排放量分别为24.26×104 t和6.00×104 t,其中PM10和PM2.5排放贡献均主要为施工扬尘和道路扬尘,施工扬尘分别贡献37.7%和39.3%,道路扬尘分别贡献36.5%和39.1%。从城市空间分布来看,杭州市、宁波市、温州市、绍兴市扬尘排放总量居于全省前四,舟山市最低,而城市主城区排放量显著高于郊区。  相似文献   

20.
通过资料分析和数值模拟开展了2015年8月1日—10日台风“苏迪罗”对珠三角地区臭氧(O3)污染影响的机理研究。结果表明,2015年8月5—8日,在台风接近登陆点的过程中,台风外围天气导致了高温、高辐射和静小风等气象条件,促进了光化学反应的进行和污染物的局地积累。同时,高温、高辐射等气象条件加剧了植被源区生物源挥发性有机物(BVOCs)的排放。采用化学传输模式模拟发现,植被BVOCs对O3污染的贡献最高可达24×10-9。结合拉格朗日粒子扩散模式(LPDM)探索了影响珠三角地区的主导气团,发现珠三角城市地区和高BVOCs源区存在交互传输的现象。污染期间,高BVOCs源区的一次排放产物(BVOCs)和二次产物(O3)经区域输送加剧了珠三角地区O3的污染。此外,研究发现台风外围条件下珠三角内陆盛行的偏北风与海陆热力差异引起的海风在沿海地区辐合,造成污染物局地积累,加剧并延长了O3污染。研究有利于加强对O3污染机理的认识,进而更好地采取针对性措施,有助于减小O3污染带来的危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号