首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
我国高速公路周边土壤重金属污染现状及研究进展   总被引:2,自引:0,他引:2  
以我国高速公路周边土壤重金属为研究对象,综述了我国高速公路周边土壤重金属污染特征、影响因素、来源、环境风险及其研究进展。高速公路周边土壤主要受Pb、Cd、Cr、Cu、Zn等重金属污染,主要呈现指数分布、偏态分布和两者混合分布等特点,并且受到土地利用、风向、地形、车流量等多种因素的综合影响。土壤重金属的来源除了受成土母质等自然因素影响以外,公路交通和周边工农业活动也会对其来源产生较大影响。传统的土壤重金属评价方法主要采用单因子指数法、地累积指数法、生态风险评价法等对重金属的污染等级和环境风险进行评价。未来的研究应将重金属形态分析、空间和地统计分析、重金属稳定同位素示踪和源解析模型以及预测模型等多种手段相结合,开展高速公路周边土壤重金属的污染特征、时空分布、来源及预测预警研究等,为我国高速公路沿线工农业生产布局及其土壤重金属污染防控提供科学依据和决策支撑。  相似文献   

2.
The pollutants that are discharged from roads and traffic have attracted much attention recently. Nonetheless, most studies have mainly focused on highways and seldom on railways. In this study, soil samples were selected at the embankment and perpendicularly at different distances (2, 5, 10, 20, 30, 50, 60, 70, 80, 100, and 150 m) from the embankment bottom of the QinghaiTibet railway. Furthermore, soils were selected at four soil depths (5, 10, 20, and 30 cm) of each sample at the flat. The enrichment of nine heavy metals (V, Cr, Co, Ni, Cu, Zn, Rb, Cd, and Pb) in soils along the DelhiUlan section of the QinghaiTibet railway was studied. The results indicated that the mean concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were highest at the embankment. The Cu concentrations in soils decreased by an S-curve-shaped function with increasing distance from the embankment, while Cd, Pb, and Zn decreased by inverse functions (p?<?0.0001). The concentrations of other studied metal did not show significant changes with increasing distance. After performing a statistical analysis, Pb, Cd, and Zn in soils were considered to be influenced by railway operations. However, the influence was weak and only spanned less than 5 m from the bottom of the embankment horizontally and 10 cm from the surface vertically. The mean concentrations of heavy metals in soils along the DelhiUlan section of the QinghaiTibet railway were considered lower compared with those along other railways.  相似文献   

3.
The heavy metal concentrations of soil and dust samples from roadside, residential areas, parks, campus sport grounds, and commercial sites were studied in Guangzhou, South China. Heavy metals in samples were determined by inductively coupled plasma atomic emission spectrophotometer following acidic digestion with HClO4 + HF + HNO3. High concentrations, especially of Cd, Pb, and Zn, were found with mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the urban dusts being 4.22?±?1.21, 62.2?±?27.1, 116?±?30, 31.9?±?12.6, 72.6?±?17.9, and 504?±?191 mg/kg dry weight, respectively. The respective levels in urban soils (0.23?±?0.19, 22.4?±?13.8, 41.6?±?29.4, 11.1?±?5.3, 65.4?±?40.2, and 277?±?214 mg/kg dry weight, respectively), were significantly lower. The integrated pollution index of six metals varied from 0.25 to 3.4 and from 2.5 to 8.4 in urban soils and dusts, respectively, with 61 % of urban soil samples being classified as moderately to highly polluted and all dust samples being classified as highly polluted. The statistical analysis results for the urban dust showed good agreement between principal component analysis and cluster analysis, but distinctly different elemental associations and clustering patterns were observed among heavy metals in the urban soils. The results of multivariate statistic analysis indicated that Cr and Ni concentrations were mainly of natural origin, while Cd, Cu, Pb, and Zn were derived from anthropogenic activities.  相似文献   

4.
This study assessed the level of heavy metal in roadside dust and PM2.5 mass concentrations along Thika superhighway in Kenya. Thika superhighway is one of the busiest roads in Kenya, linking Thika town with Nairobi. Triplicate road dust samples collected from 12 locations were analysed for lead (Pb), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), and copper (Cu) using atomic absorption spectrophotometry (AAS). PM2.5 samples were collected on pre-weighed Teflon filters using a BGI personal sampler and the filters were then reweighed. The ranges of metal concentrations were 39–101 μg/g for Cu, 95–262 μg/g for Zn, 9–28 μg/g for Cd, 14–24 μg/g for Ni, 13–30 μg/g for Cr, and 20–80 μg/g for Pb. The concentrations of heavy metals were generally highly correlated, indicating a common anthropogenic source of the pollutants. The results showed that the majority of the measured heavy metals were above the background concentration, and in particular, Cd, Pb, and Zn levels indicated moderate to high contamination. Though not directly comparable due to different sampling timeframes (8 h in this study and 24 h for guideline values), PM2.5 for all sites exceeds the daily WHO PM2.5 guidelines of 25 μg/m3. This poses a health risk to people using and working close to Thika superhighway, for example, local residents, traffic police, street vendors, and people operating small businesses. PM2.5 levels were higher for sites closer to Nairobi which could be attributed to increased vehicular traffic towards Nairobi from Thika. This study provides some evidence of the air pollution problem arising from vehicular traffic in developing parts of the world and gives an indication of the potential health impacts. It also highlights the need for source apportionment studies to determine contributions of anthropogenic emissions to air pollution, as well as long-term sampling studies that can be used to fully understand spatiotemporal patterns in air pollution within developing regions.  相似文献   

5.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

6.
The accumulation of heavy metals (Cd, Cr, Cu, Pb and Zn) and magnetic minerals in soils along an urban-rural gradient in the rapidly growing Hangzhou City, Eastern China, was measured. The analytical results indicated that heavy metal concentrations, magnetic susceptibility (chilf) and saturation isothermal remnant magnetization (SIRM) in soils decreased with increasing distance from the urban center. The significant relationships existed between heavy metal concentrations, chilf and SIRM and distance from the urban center. The soils in the urban areas were enriched with Cd, Cu, Pb and Zn. Elevated concentrations of heavy metals (especially Cd and Zn) in urban areas indicated the evidence for the accumulation of heavy metal contaminants from anthropogenic activities. Enhanced heavy metal concentrations and magnetic susceptibility were located in the uppermost soil horizons (0-10 cm), decreasing downwards to background values. The significant positive correlations between the Tomlinson Pollution Load Index (PLI) and magnetic susceptibility and SIRM were observed in polluted soil samples. Strong positive correlation indicated that magnetic screening/monitoring provided a fast and non-destructive tool, which can be effectively used as a proxy to detect environmental pollution in rapidly growing urbanization regions affected by anthropogenic activities.  相似文献   

7.
Concentrations of Cd, Cu, Fe, Pb, and Zn were measured in the samples of street dust and surface roadside soil before Jordan switched to unleaded fuel usage. The samples were collected from Petra, the most tourist-attractive site in Jordan. The samples were analyzed for heavy metals by atomic absorption spectrophotometry. Our results show that the distribution of metals in the soil samples is affected by wind direction in the investigated area. The highest level of metals was found in the eastern parts of the roads due to the westerly-dominant wind in the studied area. The contamination levels of metals decrease as the distance from the edge of the road increases. In the roadside soil samples, the means for the concentrations of the metals at 1 m from the east side of the main road are 1.0, 19.1, 3791.4, 177.0, and 129.0 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In the samples of street dust, the means of the concentrations of the metals in the investigated area are 9.7, 11.8, 4694.4, 31.6, and 24.8 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In conclusion, the lithogenic origins (traffic emissions) are responsible for the diffusion of these metals in the studied region.  相似文献   

8.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

9.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

10.
Today there is consensus concerning the road traffic's role as a metal source. However, there are so far only a few studies which focus on the road side immission patterns regarding distance from roads, and especially in combination with the leachability of heavy metals down the soil profile. In this study, the aim was to analyse concentrations of traffic related metals in road side soils, at different depths and distances from roads, both to analyse the immission patterns as well as to explain the importance of the road construction design of the road side terrain. The BCR sequential extraction procedure was performed to be able to address the environmental risk in terms of metal mobility. Approximately 80 soil samples were analysed for seven metals; antimony (Sb), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni) and zinc (Zn). The results showed that, depending on metal, the total metal concentrations in road side soils have increased 3-16 times compared to regional background during the last decades. Each metal had a limited dispersal distance from the roads as well as down in the soil profile and the road construction significantly affected the metal immission distance. Elevated metal concentrations were mostly found for top soils and down to 10 cm in the soil profiles. The labile fractions counted for more than 40% of the total concentrations for Cd, Cu, Ni, Pb and Zn, indicating a potential mobilization of the metals if the road side soils become disturbed. The present soil metal concentration levels are not alarming, but metals with a high accumulation rate might gradually be an upcoming problem if nothing is done to their emission sources.  相似文献   

11.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

12.
This paper describes a new approach that allows us to partition the anthropogenic and natural contributions to heavy metal accumulations in roadside agricultural soils. This approach, combining trend analysis and multivariate statistical analysis, partitions total heavy metals into three components: anthropogenic, natural, and unexplained residual. The approach was applied in a case study in Yixing City, China, to determine the spatial distributions of heavy metal accumulations. The results show that anthropogenic components of Pb, Cu, Zn, and Cd account for 52.4%, 23.04%, 5.09%, and 10.9% of total content, respectively. Spatial distributions of anthropogenic components are characterized by decreasing accumulation with increasing distance from the road. Ranges of influence of traffic for Pb, Cu, and Cd are beyond 300 m, whereas the range of Zn is less than 200 m. The spatial distributions of the four elements?? natural components show relatively similar distribution patterns. Assessments of variable partition methods show that the predicted values of Pb, Cu, Zn, and Cd are consistent with their measured values. The anthropogenic components extracted from total contents of heavy metal will be useful for modeling heavy metal accumulations produced by human activities.  相似文献   

13.
Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd?>?Cu?>?Ni?>?Zn?>?As?>?Cr?>?Hg?>?Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP)?>?urban land (UL)?>?manufacturing industries (MI)?>?agricultural land (AL)?>?woodland (WL)?>?water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL?>?MI?>?AL?>?WP?>?WL?>?WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.  相似文献   

14.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

15.
Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10?m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10?m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50?cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10?cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10?m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.  相似文献   

16.
Over the last several decades, there has been increased attention on the heavy metal contamination associated with highways because of the associated health hazards and risks. Here, the results are reported of an analysis of the content of metals in roadside dust samples of selected major highways in the Greater Toronto Area of Ontario, Canada. The metals analysed are lead (Pb), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr), copper (Cu), manganese (Mn), calcium (Ca), potassium (K), magnesium (Mg) and iron (Fe). In the samples collected, the recorded mean concentrations (in parts per million) are as follows: Cd (0.51), Cu (162), Fe (40,052), Cr (197.9), K (9647.6), Mg (577.4), Ca (102,349), Zn (200.3), Mn (1202.2), Pb (182.8) and Ni (58.8). The mean concentrations for the analysed samples in the study area are almost all higher than the average natural background values for the corresponding metals. The geo-accumulation index of these metals in the roadside dust under study indicates that they are not contaminated with Cr, Mn and Ca; moderately contaminate with Cd and K; strongly contaminated with Fe and Mg; strongly to extremely contaminated with Ni and Pb; and extremely contaminated with Cu and Zn. The pollution load index (PLI) is used to relate pollution to highway conditions, and the results show that PLI values are slightly low at different samples collected from Highways 401 and 404 and high in many samples collected from Highway 400 and the Don Valley Parkway. Highway 400 exhibits the highest PLI values.  相似文献   

17.
为了解北方某水库重金属污染状况,采用BCR连续提取法对该水库表层沉积物中Cu、Pb、Zn、Cd的赋存形态进行了分析,对其含量及空间分布进行了研究,结合重金属总量讨论了各元素的潜在环境风险。结果表明,该水库表层沉积物中Cu、Pb、Zn、Cd的平均质量比分别为65.20 mg/kg、36.69 mg/kg、137.5 mg/kg、2.38 mg/kg,与该地区土壤元素背景值、该地区水系沉积物平均值及全国水系沉积物平均值相比,4种重金属元素均有一定程度的累积,其中Cd累积最为严重。形态分析结果表明,Cd主要以醋酸可提取态及可还原态存在,具有很高的环境风险;Pb主要以极高比例的可还原态存在,潜在风险较高;Zn和Cu存在较大比例的酸可提取态及可还原态,也具有一定程度的潜在风险。各元素生物有效性即可提取态含量排序为:Cd>Cu>Pb>Zn。  相似文献   

18.
New Metal Emission Patterns in Road Traffic Environments   总被引:10,自引:0,他引:10  
The increased awareness of traffic as a major diffuse metal emission source emphasizes the need for more detailed information on the various traffic-related sources and how and where the metals are dispersed. In this study, metal emission patterns in the road traffic environment were examined from the perspective of different surrounding factors, e.g. the importance of intersections, deceleration, vehicle speed and traffic density. A total of 148 topsoil samples from 18 south Swedish roads were analysed (using GFAAS) for traffic-emitted metals, i.e. Cd, Cr, Cu, Ni, Pb, Sb and Zn. The roadside topsoil metal concentrations were used to examine correlations between metals and surrounding factors. The studied metals were divided into three groups corresponding to different emission sources: metals from decelerating activities (Cu, Sb and Zn), metals as historical residues from the combustion of petrol (Pb and Cd), and non-source-specific metals (Cr and Ni). It was found that Cu and Sb, despite their rather short history as traffic-emitted metals, have increased more than eightfold in roadside soils compared to background levels. The major source of road traffic related Cu and Sb is brake linings. The significant increase of Cu and Sb in roadside topsoil stresses the need for metal transport studies as well as effect studies of these metals. Metals emitted due to decelerating activities were not correlated to elevated concentrations near road junctions. Emission patterns of traffic-related metals alongside roads are crucial in order to be able to evaluate the optimal localization of storm water treatment ponds.  相似文献   

19.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

20.
In order to evaluate the current state of the environmental quality of soils in Beijing, we investigated contents of 14 metals in Beijing urban soils inside the 5th ring road by even grids sampling. Statistic analyses were conducted to identify possible heavy metal pollutants, as well as the effects of land uses on their accumulation. Our results revealed that the urban soils in Beijing were contaminated by Cd, Pb, Cu, and Zn. Land uses and urbanization ages affected the accumulation of the four heavy metals in soils significantly. Soils in industrial areas have the highest average Cu and Zn contents, while Pb contents in park areas and Cd in agricultural areas are the highest. The accumulations of Pb and Zn in urban soils increase significantly with sampling plots approaching the city center. And Pb, Cd, and Zn contents in soils in traffic areas also tend to increase in the city center. However, residential areas have the lowest contents of all the four heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号