首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.  相似文献   

2.
2-Ethyl-1-hexanol is a possibly causative chemical in sick building symptoms, although 2-ethyl-1-hexanol has received little attention as a hazardous substance in studies on indoor air pollution. Airborne 2-ethyl-1-hexanol concentrations were measured from 2002 to 2004 in 99 rooms of 42 non-domestic buildings in Nagoya, Japan. The diffusive sampling method is effective for the measurement of a low level of 2-ethyl-1-hexanol in indoor air. The geometric mean (geometric standard deviation) of 2-ethyl-1-hexanol concentrations was 16.5 (5.4) microg m(-3) in indoor air and 1.9 (2.2) microg m(-3) in outdoor air. The maximum concentration of 2-ethyl-1-hexanol in indoor air and outdoor air was 2709 microg m(-3) and 12.4 microg m(-3), respectively. Fewer rooms in a small number of new buildings showed high concentrations of 2-ethyl-1-hexanol, while low concentrations were observed in many rooms of these buildings as well as the other new buildings. The room-to-room concentrations of 2-ethyl-1-hexanol in each building exhibited a wide variation. The geometric mean of the 2-ethyl-1-hexanol concentrations was significantly higher for indoor air than for outdoor air (p < 0.01). The correlation of the 2-ethyl-1-hexanol concentrations between indoor and outdoor air was not significant. Mechanical ventilation was effective in the temporary reduction of indoor 2-ethyl-1-hexanol level. These results suggest that the predominant source of 2-ethyl-1-hexanol was indoor areas.  相似文献   

3.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

4.
A funded research project was conducted during the period July1992 through November 1994. The project was designed to evaluateindoor and ambient air quality in and around buildings of different types and uses in Riyadh, the capital of Saudi Arabia.Thirty intercity buildings and two outercity (background) siteswere carefully selected and monitored for air quality. Ten airpollutants, together with relevant meteorological parameters, were monitored indoor and outdoor at each site continuously andsimultaneously for a period of two weeks covering summer and winter seasons.This article discusses the results obtained for sulfur dioxide (SO2), ammonia (NH3) and formaldehyde (HCHO). Results of this investigation revealed that most sites had on the averageexceeded the recommended standards for SO2 and NH3 bothindoor and outdoor, with indoor levels being worse than outdoorduring winter time. Several sites also showed high levels of HCHO, with outdoor levels being consistently higher than indoor.Statistical and frequency analyses were performed on the collected data, showing seasonal and sector by sector variability, and outdoor-indoor correlations.  相似文献   

5.
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.  相似文献   

6.
This study was investigated the density and monthly distribution of indoor and outdoor microfungi in six different residential houses in Tekirdag City through the exposure of Petri dishes containing Rose-Bengal Streptomycin Agar media. Samples were collected in 1-month intervals over a period of 12 months between March, 2001, and February, 2002. We used 432 Petri dishes and counted a total of 4,205 microfungi colonies, 1,790 from indoor air and 2,415 from outdoor air. As a result, 42 species belonging to 12 genera were identified. The most frequent fungal genera were Penicillium (28.61%), Cladosporium (16.08%) and Alternaria (15.98%). While Penicillium (40.61%) and Cladosporium (15.92%) were the dominant genera of indoor air, Alternaria (20.62%) and Penicillium (19.71%) were isolated most frequently from outdoor air (Table 3). Alternaria citri (10.15%) and Penicillium brevicompactum (10.15%) were found to be the most frequent among the 42 identified species. While P. brevicompactum (19.55%) and Aspergillus niger (6.37%) were the most frequent indoor species, A. citri (13.37%) and Cladosporium cladosporioides (8.20%) were the most frequent outdoor species. Linear Regression Analysis was applied to determine whether or not there was a relationship between the number of colonies of isolated fungal genera and meteorological factors during the research period. Correlations between the presence of Aspergillus and temperature, relative humidity, duration of sunny periods and agents of air pollution such as SO(2) and PM were statistically significant. No significant correlations, however, were found between other fungal genera and environmental variables.  相似文献   

7.
An extensive study has been conducted on the prevalence of organophosphorous flame retardants/plasticizers and phthalate ester plasticizers in indoor air. The targeted substances were measured in 45 multi-storey apartment buildings in Stockholm, Sweden. The apartment buildings were classified as high or low risk with regard to the reporting of sick building symptoms (SBS) within the project Healthy Sustainable Houses in Stockholm (3H). Air samples were taken from two to four apartments per building (in total 169 apartments) to facilitate comparison within and between buildings. Association with building characteristics has been examined as well as association with specific sources by combining chemical analysis and exploratory uni- and multivariate data analysis. The study contributes to the overall perspective of levels of organophosphate and phthalate ester in indoor air enabling comparison with other studies. The results indicated little or no difference in the concentrations of the target substances between the two risk classifications of the buildings. The differences between the apartments sampled within (intra) buildings were greater than the differences between (inter) buildings. The concentrations measured in air ranged up to 1200 ng m(-3) for organophosphate esters and up to 11?000 ng m(-3) for phthalate esters. Results in terms of sources were discerned e.g. PVC flooring is a major source of benzylbutyl phthalate in indoor air.  相似文献   

8.
The purpose of this study was to determine the concentration, in terms of monthly and seasonal distribution and in relation to meteorological factors, of indoor and outdoor microfungi at selected sites in several child day care centers in the city of Edirne, Turkey. Samples were collected at one month intervals over a period of 12 months between January-December 2004, by exposing petri plates containing Peptone Dextrose Agar with Rose-Bengal and Streptomycin medium to the air for 10-15 min. A total of 2,071 microfungal colonies were counted on 192 petri plates. Thirty microfungal genera (Acremonium, Alternaria, Arthrinium, Aspergillus, Bahusakala, Beauveria, Ceuthospora, Chaetomium, Cladosporium, Curvularia, Drechslera, Epicoccum, Eurotium, Fusarium, Mycotypha, Myrotechium, Paecilomyces, Penicillium, Pestalotiopsis, Phoma, Ramichloridium, Rhizopus, Scopulariopsis, Stachybotrys, Stemphylium, Torula, Trichoderma, Trichothecium, Ulocladium, Verticillium) and 75 microfungal species were isolated from the air indoor and outdoor of the day care centers. The dominant microfungal genera were Cladosporium, Penicillium and Alternaria (44.11%, 18.94%, 14.67% of the total respectively), while the genus with the most species richness was Penicillium (26 species). Alternaria, Cladosporium, Penicillium and non-sporulating microfungi were found every month. Cladosporium was the dominant genus in both indoor and outdoor air. Although the predominant genus was the same in both indoor and outdoor air, Cladosporium was followed by Penicillium, Alternaria and Aspergillus genera in indoor air and by Alternaria, Penicillium and Aspergillus genera in outdoor air. While a positive correlation was found between the concentration of monthly outdoor microfungi and monthly average temperature, a negative correlation was found between the concentration of monthly outdoor microfungi and monthly average wind velocity. Also, some relationships were found between the monthly concentrations of the most predominant microfungal genera (Cladosporium, Penicillium and Alternaria) and various meteorological factors.  相似文献   

9.
Fine particles (PM2.5) were sampled indoors and outdoors at 40 sampling sites; in ten classrooms in five schools, at ten preschools and 20 non-smoking homes, in three communities in Stockholm, Sweden, during nine 2-week periods. Each sampling site was sampled twice, once during winter and once during spring. The samples were analysed for elemental concentrations using X-ray fluorescence (XRF) spectroscopy. In all locations significantly higher outdoor concentrations were found for elements that are related to long-range transported air masses (S, Ni, Br and Pb), while only Ti was higher indoors in all locations. Similar differences for S, Br and Pb were found in both seasons for homes and schools. In preschools different seasonal patterns were seen for the long-range transported elements S, Br and Pb and the crustal elements Ti, Mn and Fe. The indoor/outdoor ratios for S and Pb suggest an outdoor PM2.5 particle net infiltration of about 0.6 in these buildings. The community located 25 km from the city centre had significantly lower outdoor concentrations of elements of crustal or traffic origin compared with the two central communities, but had similar levels of long-range transported elements. Significant correlations were found between PM2.5 and most elements outdoors (rs = 0.45-0.90). Copper levels were found to correlate well (rs = 0.64-0.91) to the traffic marker NO2 during both winter and spring in all locations. Copper may be a suitable elemental marker for traffic-related aerosols in health studies in areas without other significant outdoor Cu sources.  相似文献   

10.
宣威市和富源县位于我国云南省东北部,是全世界肺癌发病率最高的地区之一。当地居民在不通风的房间内燃烧烟煤做饭或取暖造成了严重的室内空气污染。研究表明,长期暴露在燃煤造成的污染物中是导致两地居民肺癌持续高发的主要原因,多环芳烃是最可疑的致病因子之一。2008年1月,分别用聚胺脂泡沫和玻璃纤维滤膜采集了当地9个点位室内、室外空气中气相和颗粒物相中的多环芳烃,同时采集了对应点位的土壤样品。通过对样品的分析,考察了当地空气和土壤中多环芳烃的污染水平、特征以及来源。结果证明,当地空气和土壤中存在严重的多环芳烃污染,室内污染显著高于室外,然而随着当地工业的发展室外污染同样不可忽视,主成分分析结合比值法证明,当地室内外多环芳烃的主要污染源来自于煤炭的燃烧。对空气颗粒物和土壤中多环芳烃浓度进行了比较,对土壤中多环芳烃的来源进行了验证。  相似文献   

11.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

12.
Total suspended particulate (TSP), PM(2.5) and BTEX were collected in nine offices in the province of Antwerp, Belgium. Both indoor and outdoor aerosol samples were analysed for their weight, elemental composition, and water-soluble fraction. Indoor TSP and PM(2.5) concentrations ranged from 7-31 microg m(-3) and 5-28 microg m(-3), with an average of 18 and 11 microg m(-3), respectively. Of all the elements analysed in indoor TSP, more than 95% was represented by Al, Si, K, Ca, Fe, Cl and S, accounting for 12% of the TSP by mass. The other elements showed significant enrichment relative to the earth's crust. The water-soluble ionic fraction accounted for almost 30% of the sampled indoor TSP by weight, and was enriched by anthropogenic activities. It was shown that the indoor PM levels varied among the offices, depending on the ventilation pattern, location, and occupation density of the office. Indoor BTEX levels ranged together from 5-47 microg m(-3) and were considerably higher than the corresponding outdoor levels. It was observed that some recently constructed and renovated buildings were clearly burdened with elevated levels for toluene, ethyl benzene, and xylenes, while outdoor air was found to be the main source for BTEX levels at the 'older' offices.  相似文献   

13.
Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.  相似文献   

14.
To study the distribution of Aspergillus spp. in outdoor and indoor air of asthmatic patients’ houses, as well as a review on the health effects of exposure to indoor Aspergillus. Open plates containing malt extract agar media were used to isolate fungi from the indoor (n?=?360) and outdoor (n?=?180) air of 90 asthmatic patients’ houses living in Sari City, Iran. Plates were incubated at room temperature for 7–14 days. Cultured Aspergillus spp. were identified by standard mycological techniques. All culture plates grew fungi, a testament to the ubiquitous nature of fungal exposure. Cladosporium spp. (29.2%), Aspergillus spp. (19.0%), and Penicillium spp. (18.3%) were most common inside the houses while Cladosporium spp. (44.5%), Aspergillus spp. (12.4%), and Alternaria spp. (11.1%) were most common outside the houses. Aspergillus flavus (30.1%) and A. fumigatus (23.1%) are the most commonly isolated species in indoor air. Aspergillus flavus (44.5%) and A. fumigatus (42.6%) were the most prevalent Aspergillus spp. outside. The most colony numbers of Aspergillus were isolated from kitchens (30.4%) and the least from bedrooms (21.1%). Aspergillus flavus was the most prevalent specie in all sampled rooms except in the kitchen where A. fumigatus was the most common. Aspergillus flavus is the most prevalent species among the Aspergillus spp. in the indoor and outdoor of a warm climate area. In these areas, A. flavus can be a major source of allergen in the air. Therefore, minimizing indoor fungal exposure could play an important role in reducing allergic symptoms in susceptible persons.  相似文献   

15.
Soil and air samples of seven different localities around Hamitabat Thermic Power Plant, 10 km far away from Luleburgaz/Kirklareli (Turkey), were taken between the years 2003 and 2004 with seasonal intervals. The samples were brought to the laboratory and their microfungal identifications were done. From the air samples, 737 microfungi colonies were isolated comprising 26 species belonging to eight genera. From soil samples, 170.6 × 104 colony-forming unit (CFU)/g was isolated from 33 species belonging to 16 genera. The most isolated genus from air samples was Alternaria (324 CFU, 43.96%), followed by Cladosporium (208 CFU, 25.52%) and Phoma (44 CFU, 5.40%). Penicillium was the most isolated genus from the soil samples with a value of 560,000 CFU/g (32.8%), followed by Fusarium (226,000 CFU/g, 13.12%) and Aspergillus (154,000 CFU/g, 9.03%). Among these species, Alternaria citri and Alternaria alternata are the most abundant species in air with 164 and 107 CFU, respectively, whereas Fusarium graminearum and Penicillium citrinum are the most abundant species in soil with CFU per gram values of 17.8 × 104 and 1.3 × 105. Correlation analysis was applied to determine whether or not there was a relationship between colony number of isolated fungal genera and meteorological factors. Some parameters of soil samples’ incontent during the research period were calculated using a computer analysis program. From the air samples, a positive correlation was found between relative humidity and Alternaria colonial counts and Cladosporium spore counts (r?=?0.912 and r?=?1.000, respectively). Similarly, with the analysis of soil samples, a positive correlation between colonial counts of Alternaria and soil pH and a positive correlation between colonial counts of Aspergillus and Penicillium and salt percentage concentration of soil were found.  相似文献   

16.
Air samples were collected from 4 field sites in Europe: 2 sites from the UK, Hazelrigg (semi-rural) and Manchester (urban); 1 site from Ireland: Mace Head (rural); and 1 site from Norway: Kjeller (rural). Additionally, air samples were taken from indoor locations in Troms?, Norway. Air samples were collected using high-volume air samplers employing sampling modules containing glass-fibre filters (GFFs, particle phase), and glass columns with a polyurethane foam (PUF)-XAD-2-PUF sandwich (gaseous phase). Typical outdoor air volumes required for the determination of per- and polyfluorinated alkyl substances (PFAS) ranged from 500-1800 m3. GFFs and PUF-XAD columns were analysed separately to obtain information on phase partitioning. All air samples were analysed for volatile, neutral PFAS, with selected GFF samples halved for analysis of both neutral and airborne particle-bound ionic PFAS. Volatile PFAS were extracted from air samples by cold-column immersion with ethyl acetate, and were analysed by gas chromatography-mass spectrometry in the positive chemical ionisation mode (GC-PCI-MS). Ionic PFAS were extracted from GFFs by sonication in methanol, and were analysed by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) using electrospray ionisation in the negative ion mode (ESI-). Perfluorooctanoate (PFOA) was often the predominant analyte found in the particulate phase at concentrations ranging from 1-818 pg m(-3), and 8:2 fluorotelomer alcohol (FTOH) and 6:2 FTOH were the prevailing analytes found in the gas phase, at 5-243 pg m(-3) and 5-189 pg m(-3), respectively. These three PFAS were ubiquitous in air samples. Many other PFAS, both neutral and ionic, were also present, and levels of individual analytes were in the 1-125 pg m(-3) range. Levels of some PFAS exceeded those of traditional persistent organic pollutants (POPs). In this study, the presence of 12:2 FTOH and fluorotelomer olefins (FTolefins), and ionic PFAS other than perfluorooctane sulfonate (PFOS) and PFOA, are reported in air samples for the first time. Concentrations of neutral PFAS were several orders of magnitude higher in indoor air than outdoor air, making homes a likely important diffuse source of PFAS to the atmosphere. Our repeated findings of non-volatile ionic PFAS in air samples raises the possibility that they might directly undergo significant atmospheric transport on particles away from source regions, and more atmospheric measurements of ionic PFAS are strongly recommended.  相似文献   

17.
贵阳室内氡时空分布特征研究   总被引:1,自引:0,他引:1  
为了全面分析室内氡的时空分布特征、来源和影响因素,选择了贵阳市不同地理位置的居民住宅、办公场所和公共场所,进行了为期一年的室内氡监测。贵阳市室内氡的平均浓度为(72.7±1.6)Bq/m3,低于室内空气污染国家标准,达标率98.5%。其中居民住宅、办公场所和公共场所的室内氡浓度分别为(93.46±86.93)、(74.68±40.74)、(61±26.93)Bq/m3。研究表明,室内涂料、装修程度和通风效果、小区环境等对室内氡浓度高低有显著影响,室内氡也随季节变化而发生波动。对于居民住宅和公共场所氡的室内外来源相对重要性不同。居民住宅内新楼和旧楼不同楼层室内氡的来源、影响因素和分布特征有显著差异。  相似文献   

18.
Our group previously demonstrated that carbon dioxide (CO2) levels in heavily occupied schools correlate with the levels of airborne bacterial markers. Since CO2 is derived from the room occupants, it was hypothesized that in schools, bacterial markers may be primarily increased in indoor air because of the presence of children; directly from skin microflora or indirectly, by stirring up dust from carpets and other sources. The purpose of this project was to test the hypothesis. Muramic acid (Mur) is found in almost all bacteria whereas 3-hydroxy fatty acids (3-OH FAs) are found only in Gram-negative bacteria. Thus Mur and 3-OH FA serve as markers to assess bacterial levels in indoor air (pmol m(-3)). In our previous school studies, airborne dust was collected only from occupied rooms. However, in the present study, additional dust samples were collected from the same rooms each weekend when unoccupied. Samples were also collected from outside air. The levels of dust, Mur and C10:0, C12:0, C14:0, and C16:0 3-OH FAs were each much higher (range 5-50 fold) in occupied rooms than in unoccupied school rooms. Levels in outdoor air were much lower than that of indoor air from occupied classrooms and higher than the levels in the same rooms when unoccupied. The mean CO2 concentrations were around 420 parts per million (ppm) in unoccupied rooms and outside air; and they ranged from 1017 to 1736 ppm in occupied rooms, regularly exceeding 800-1000 ppm, which are the maximum levels indicative of adequate indoor ventilation. This indicates that the children were responsible for the increased levels of bacterial markers. However, the concentration of Mur in dust was also 6 fold higher in occupied rooms (115.5 versus 18.2 pmole mg(-1)). This further suggests that airborne dust present in occupied and unoccupied rooms is quite distinct. In conclusion in unoccupied rooms, the dust was of environmental origin but the children were the primary source in occupied rooms.  相似文献   

19.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

20.
Air concentrations of 28 of the most commonly used household pesticides were measured inside nine homes in Jacksonville, Florida, and compared with corresponding outdoor levels. The households selected were sorted into three categories according to the degree of pesticide indoor usage. Personal air monitoring was also performed on one resident of each household by means of a portable sampler, which was kept with the person at all times. Five of the pesticides were found in the air inside of the majority of the homes at concentrations as high as 15 gm–3 (average concentrations, 12 ngm–3 to 2.4 gm–3). Indoor levels were generally one to two ordrrs of magnitude higher than surrounding outdoor air levels and personal air measurements were within ± 50% of corresponding indoor values. All samples were collected over 24-hr periods on polyurethane foam and analyzed by capillary colum gas chromatography with mass spectrometric and/or electron capture detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号