首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为研究焦作市大气污染特征及其相关性,对2015—2017年焦作市4个国控空气监测点位的监测数据进行统计分析。结果表明:2015—2017年城区环境空气污染SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度均呈逐年下降趋势;大气污染浓度季节变化特征明显,PM_(10)、PM_(2.5)、SO_2、NO_2、CO的浓度均为冬季最高、夏季最低,空气质量指数也在冬季达到最高值; O_3浓度则为夏季最高、冬季最低。2017年焦作市沙尘天气共计36 d,严重影响了环境空气中颗粒物的浓度。由PM_(2.5)与PM_(10)的比值说明大气颗粒物污染以PM_(2.5)为主。通过SPSS软件分析,SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度间呈两两正相关,O_3浓度与NO_2、CO呈负相关。  相似文献   

2.
基于2016年冬季泰州市环境空气质量自动监测数据,定量评估NAQPMS模式、CMAQ模式和人工订正对污染物质量浓度和空气质量等级的预报效果。结果表明,模式预报和人工订正对各污染物预报的相关系数由高到低排列为PM_(2.5)、PM_(10)、NO_2、SO_2、O_3-8h,颗粒物预报效果最好。除O_3-8h外,NAQPMS对各项污染物预报的相关系数R为0.47~0.82,CMAQ为0.75~0.81,人工订正为0.43~0.78,3种预报方式均能准确反映污染物浓度的变化趋势;模式预报、人工订正对O_3-8h预报相关系数均0.4。在发生颗粒物污染过程时,人工订正结果相对更为准确。NAQPMS、CMAQ和人工订正对空气质量等级24 h预报准确率分别为38.9%、41.1%和35.6%,NAQPMS对优类别的预判准确率较高,CMAQ、人工订正对良类别的预判准确率较高。对比不同时效的预报效果,24 h预报时效的准确率高于48和72 h。提出,城市空气质量预报可采用集合预报方式,综合1~2种运行较稳定的主流预报模式预报结果,预报员对模式模拟结果进行人工修订,提高预报准确率。  相似文献   

3.
为检验PM_(2.5)和PM_(10)新监测标准实施近3年长沙大气颗粒物污染状况,利用近3年每日监测数据,对长沙10个国控自动监测点PM_(2.5)和PM_(10)达标情况、首要污染物及变化特征进行研究分析。结果表明,近3年长沙市PM_(2.5)和PM_(10)年均质量浓度均超过了新标准规定的年均值二级标准限值;2013年污染最严重。PM_(2.5)和PM_(10)月均值峰值出现在1月和11月,谷值在8月,各月PM_(2.5)超标天数和首要污染物为PM_(2.5)天数都大于PM_(10);PM_(2.5)和PM_(10)冬季日均值浓度明显高于其他季节,呈双峰型,峰值在上午10:00和20:00~21:00,夜晚浓度高于白天;PM_(2.5)春、夏、秋三季日变化呈单峰型,峰值在20:00~21:00;PM_(10)四季日变化呈双峰型。PM_(2.5)和PM_(10)浓度的比值(P)1月和2月最高,PM_(10)和PM_(2.5)日均值有着显著的线性相关性。  相似文献   

4.
中国城市细颗粒物(PM_(2.5))空气质量达标率低,且城市间的污染程度差异较大。为了整体改善PM_(2.5)空气质量,需要针对不同污染程度的城市,制定分阶段改善目标加以考核和管理,研究探讨了城市PM_(2.5)空气质量改善目标体系及不同污染程度城市各阶段目标值。首先运用文献综述法、国内外对比分析法梳理评述了WHO、欧美等发达国家PM_(2.5)的空气质量标准和达标要求,提出中国城市PM_(2.5)空气质量改善的考核目标体系,包括PM_(2.5)浓度目标值或下降率、严重污染天数上限、达标天数下限等指标。通过历史数据分析法研究了2000—2013年美国、日本一些城市和2013—2016年中国74个环保城市PM_(2.5)年均浓度的变化趋势,推论出中国城市PM_(2.5)年均浓度年均下降5%~8%是可能实现的;结合环境保护部及各省市PM_(2.5)污染防治规划,提出PM_(2.5)空气质量改善目标的设定原则和达标天数的回归计算方法;以2014年114个城市PM_(2.5)年均浓度为基数,计算得出不同污染程度城市2020、2025、2030年PM_(2.5)年均浓度年下降率和达标天数的目标值。  相似文献   

5.
利用2015年环境空气质量监测数据,对天津市OPAQ空气质量统计预报模型预测效果进行验证评估。结果表明,模型对天津市AQI和PM_(2.5)、PM_(10)、O_3、NO——2的预测结果与实测结果具有较好的趋势一致性,且预测时间越临近,拟合度越好,24 h预报的相关系数r全部达到0.8以上。对PM_(2.5)的预报性能明显优于PM_(10)、O_3和NO_2,PM_(2.5)平均值预测略呈正偏差,但重污染预测值偏低约15%;O_3和NO_2预测值呈明显负偏差,O_3峰值预测不足,NO_2预测值整体偏低,均以24 h预报趋势性最好,但负偏差最为突出。  相似文献   

6.
基于全国空气质量监测网数据,分析了2015—2019年汾渭平原11个城市臭氧(O_3)污染状况。结果表明:2015—2019年,汾渭平原11个城市O_3平均浓度总体呈升高趋势,年平均升高12.2μg/m~3,其中,2017—2019年均超过二级标准限值(160μg/m~3)。O_3单项污染物的空气质量分指数占空气质量指数的比例逐年升高,O_3超标使汾渭平原2015—2019年各年度空气质量优良天数比例分别减少了1.4、5.4、13.0、11.1、14.4个百分点。O_3浓度呈春夏季(5—9月)高、秋冬季(11—12月)低的特点,其中,5—9月O_3超标天数占全部O_3超标天数的97%以上。各年度O_3日最大8小时平均质量浓度(O_3-8 h)的最大值分别为152、176、224、195、202μg/m~3,均出现在5—7月。O_3-8 h介于150~160μg/m~3的日期主要集中在6—8月,介于160~170μg/m~3的日期主要集中在5—7月,两区间对应的日期属于O_3达标敏感天。2017—2019年,区域内各年度首次出现O_3小时污染的日期有逐渐提前的趋势。2019年,汾渭平原11个城市O_3-8 h第90百分位浓度介于138~204μg/m~3,9个城市超过二级标准限值,O_3超标使临汾、洛阳、晋中、运城、渭南、西安、吕梁、咸阳8个城市的空气质量优良天数比例减少了10个百分点以上。  相似文献   

7.
利用2017年佛山市8个国控监测点位的6项常规大气污染物自动监测数据,研究细颗粒物(PM_(2.5))、可吸入颗粒物(PM 10)、臭氧(O_(3))的时空变化和复合污染特征,并采用单颗粒气溶胶质谱仪对佛山市大气PM_(2.5)进行来源解析,分析O_(3)与二次气溶胶的协同增长关系。结果表明,2017年佛山市空气质量综合指数(AQI)为4.75,主要的空气质量污染物为PM_(2.5)、二氧化氮(NO_(2))和O_(3),除O_(3)呈现第2,3季度较高外,其他5项污染物均呈现第1,4季度较高的趋势。ρ(PM_(2.5))和ρ(PM_(2.5))/ρ(CO)在1—4月和11,12月较高,二次生成强度较大。机动车尾气源、燃煤源和工业工艺源是大气PM_(2.5)的主要来源。佛山市中心城区等道路密集以及交通枢纽地区的ρ(NO_(2))较高,机动车尾气排放是大气NO_(2)的主要来源。O_(3)污染主要发生在4,5,7—10月。ρ(O_(3))和ρ(PM_(2.5))/ρ(CO)的日变化均在12:00—17:00达到峰值。ρ(PM_(2.5))随光化学活性水平增强而提高,高度和中度光化学活性水平下ρ(PM_(2.5))/ρ(CO)明显大于轻度和低光化学活性水平。在统计时段,PM_(2.5)和O_(3)协同增长的时间占37.3%,O_(3)污染对二次气溶胶的氧化生成有明显的促进作用。  相似文献   

8.
利用2015—2017年春节期间东北地区主要大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、CO和O3)质量浓度监测资料及相应气象因子(温度、湿度、风速和气压)观测资料,分析了春节期间烟花爆竹禁燃对东北地区空气质量的影响。结果表明:随着东北地区主要城市禁燃力度的增强,空气质量逐年提升,PM_(2.5)和SO_2浓度逐年大幅度下降。禁燃可明显降低城区PM_(2.5)浓度,而由于春节期间污染源整体减少,城区和城郊监测点PM_(2.5)浓度值差异减小。烟花爆竹对PM_(10)和PM_(2.5)浓度影响高于对气体污染物SO_2、NO_2和CO的影响。此外,气象条件对东北地区春节期间禁燃改善空气质量的效果也有明显影响。因此,结合春节期间的气象条件,在东北地区实施禁燃政策动态调整非常必要。  相似文献   

9.
使用2012—2015年无锡市区的6种大气污染物监测数据,对无锡市区各污染物的年度变化、空间分布、影响因素进行了分析。结果表明:(1)2012—2015年无锡市区SO_2、O_3质量浓度呈下降趋势,且趋势显著;NO_2质量浓度呈下降趋势,但不明显;CO、PM_(10)、PM_(2.5)的质量浓度年际变化比较平稳。(2)无锡市区SO_2、NO_2、PM_(10)、PM_(2.5)、CO的空气质量分指数(IAQI)均为冬季最高、夏季最低;O_3的IAQI则为夏季最高、冬季最低。(3)SO_2、NO_2、PM_(10)、PM_(2.5)、CO浓度间呈两两正相关,且相关性极显著;O_3浓度与NO_2、CO呈显著负相关,与SO_2、PM_(10)、PM_(2.5)浓度之间没有明显的关联。(4)分析了无锡市区各项大气污染物浓度的空间分布特征。(5)SO_2、NO_2、PM_(10)浓度周内变化具有"周末效应"的特征,而O_3、CO和PM_(2.5)浓度周内变化出现"反周末效应"。  相似文献   

10.
杭州城区PM2.5和PM10污染特征及其影响因子分析   总被引:1,自引:0,他引:1  
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。  相似文献   

11.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

12.
2018年11—12月北京市发生了4次以PM2.5为首要污染物的重污染天气过程,为了分析数值模型对4次重污染过程的预报能力,将CMAQ模式提前1~7 d对北京市PM2.5的小时预报结果与观测结果对比,分别从离散统计和分类统计2个方面评估CMAQ模式对4次重污染天气过程的预报效果,并简要分析了偏差产生的气象方面原因。结果表明:CMAQ模式提前1~6 d对重污染天气过程的预报显示出良好的性能,为日常业务预报提供了可借鉴的参考信息,可较好地预报出PM2.5小时浓度变化趋势和浓度水平,离散统计结果显示提前1~4 d的预报结果好于提前5~7 d,相关系数r基本大于0.8,但有一定程度的低估趋势;分类统计结果显示不同预报时效预报准确率大于70%,探测准确率高于55%,部分时段可以达到80%~90%,对人工预报起到了良好的参考作用;输入的气象场的变化及其偏差对于重污染的起始时间、持续时间及清除时间有一定的影响,对相对湿度预报偏小和风速预报偏大是造成CMAQ模式低估的一个重要原因。  相似文献   

13.
利用山西省11个地级市大气环境监测站的PM2.5、PM10和O3浓度数据,分析了2015—2020年山西省PM2.5、PM10和O3浓度时空变化特征,采用空间计量模型和岭回归方法,分析了空气污染对公众健康的空间影响。结果表明:PM2.5和PM10年均质量浓度总体下降,两者在2017年最高,2020年最低;O3年均浓度总体增加。在季节尺度上,PM2.5和PM10质量浓度在冬季的12月和1月最高,夏季的8月最低;O3浓度在6月最高。空间上,相较2015年,2020年山西省各地级市PM2.5污染程度均有改善,其中长治改善效果最好;2020年山西各地级市PM10污染兼有加重和减轻的情形,所有地级市PM2.5和PM10污染水平均超过国家二级污染浓度限值;2020年山西多数地级市O3浓度升高。山西公众健康水平具有明显的空间离散特征,PM2.5和PM10浓度的局部空间自相关特征高度一致,呈现"南高北低"的格局,O3浓度分布呈"南部高,中北部低"的格局。大气环境质量和经济发展水平均对医疗机构诊疗人数和健康体检人数的变化有正向影响,每万人卫生技术人员数量和公共财政支出比例对公众健康均有负向影响,其中经济发展水平和大气环境质量的影响最显著。山西省PM2.5治理取得一定成效,但大部分城市PM2.5和PM10达标率较低,O3浓度有持续升高的趋势,PM10和O3污染改善缓慢,深度减排仍面临挑战。PM2.5和PM10是危害山西公众健康的主要大气污染物,未来需要加强PM2.5、PM10和O3的精细化管理及协同治理。  相似文献   

14.
多年来,临汾市多次名列我国生态环境部公布的空气质量最差的重点城市之列,对其大气污染的时间分布特征和潜在源区进行分析对其环境管理与污染防治具有重要意义。利用2015—2019年临汾市5个国控空气环境质量监测站点的6种空气污染物(SO2、NO2、CO、O3、PM2.5和PM10)浓度数据和气象观测数据,使用HYSPLIT模型研究了该市空气污染物的时间变化特征、轨迹输送特征和可能的来源。结果表明,PM2.5和PM10的年均浓度均超过了《环境空气质量标准》(GB 3095—2012)Ⅱ级标准,SO2仅在2016—2017年超过该标准,其余3种污染物的年均浓度均低于该标准。6种污染物2015—2019年的月均浓度的变化特征表现为O3浓度呈以6、7月为中心的近似正态分布,SO2、NO2和CO以及PM2.5和PM10浓...  相似文献   

15.
上海市秋季典型PM2.5污染过程数值预报分析   总被引:12,自引:5,他引:7       下载免费PDF全文
基于2012年10月上海出现的一次典型PM2.5污染案例,验证评估上海市空气质量数值预报系统Model-3/CMAQ预报性能,采用过程分析技术,定量评估不同大气物理化学过程对上海代表性点位PM2.5浓度变化的作用规律。结果表明:Model-3/CMAQ模式系统能较好地反映PM2.5的浓度变化趋势与特点。对于上海市区点位(徐汇上师大)和东南部点位(奉贤海湾和浦东惠南),PM2.5浓度上升主要受本地源排放影响,其贡献比例超过40%,其次是区域大气传输作用的影响。对于西北部点位(崇明监测站和青浦淀山湖),区域大气传输是PM2.5浓度上升的主要原因,贡献比例超过70%,其次是源排放。各点位PM2.5浓度的主要去除途径均为大气传输,贡献比例均超过70%,其次是干沉降。气溶胶过程对PM2.5主要起二次颗粒物生成的作用,特别是市区及东南部点位,贡献比例较西北部点位更高。  相似文献   

16.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

17.
"十二五"以来中国先后颁布了一系列大气污染防治政策并实施相应的大气污染治理措施以提高环境空气质量。为研究西藏自治区"十二五"(2011-2015年)和"十三五"(2016 -2020年)时期环境空气质量变化状况,评估大气污染防治措施实施效果,笔者对2011-2020年西藏自治区7个城市(地区)主要大气污染物浓度和优良天数比例变化进行分析。结果表明:随着一系列大气污染防治措施的实施,西藏自治区环境空气质量显著提升,与"十二五"时期相比,"十三五"时期西藏自治区年平均优良天数比例由97.5%±2.0%提升至99.3%±0.4%,SO2、 NO2、 PM10、 PM2.5浓度年均值和CO 浓度第95百分位数均呈下降趋势,其中CO、PM10和PM2.5浓度下降幅度较大,O3日最大8h滑动平均值第90百分位数略有上升。西藏自治区环境空气质量与人口、经济发展程度呈负相关关系。受污染源排放、气象条件和区域传输等因素影响,西藏自治区O3浓度春、夏季较高,而其余污染物浓度冬季较高。  相似文献   

18.
基于2014—2020年重庆市中心城区北碚区环境监测数据及地面观测气象要素,分析了北碚区大气污染特征,利用KNN算法建立大气污染的评估模型,对空气质量改善效果进行评估。结果表明,重庆市中心城区北碚区的PM2.5浓度逐年呈明显下降趋势,O3浓度除夏季有一个弱的下降趋势外,其余3个季节和年平均值整体均呈上升趋势。全年以优良天气为主且呈增加趋势。O3与气温、日照时间呈正相关,与相对湿度呈负相关性,PM2.5与气温、降水及风速呈负相关。基于KNN算法对空气质量改善状况评估表明,减排对O3污染平均贡献率在-4.7%左右,对PM2.5污染平均贡献率为-52%,气象条件对O3污染的平均贡献率在17%左右,对PM2.5污染的平均贡献率在-7%左右。该大气污染评估模型能够有效地评估空气改善效果。  相似文献   

19.
环境空气质量新旧评价体系及评价结果差异   总被引:3,自引:2,他引:1  
在分析环境空气质量评价体系的变化的基础上,通过分析实际监测数据说明评价体系变化对评价结果的影响。结果表明:由于NO2和PM10的年平均二级浓度限值收严,用新标准评价全国325个地级以上城市2012年的达标情况,将有164个城市由达标变为不达标;参照《环境空气质量评价技术规范(试行)》评价2012年度地级以上城市的达标情况,达标率由91.4%降为41.8%;不同时段O3的1 h平均浓度值对计算其8 h滑动平均浓度值的贡献不同,可能引起8 h滑动平均浓度值计算结果的差异;由于在计算实时空气质量指数时PM10和PM2.5使用24 h滑动平均浓度值,当空气质量突变时会出现评价结果与实际污染状况不符的情况。  相似文献   

20.
为了解襄阳市秋冬季PM2.5的污染特征及来源,基于2020年11月至2021年1月在线监测数据,对PM2.5质量浓度、气象因素、化学组分、来源及潜在源区进行了分析。结果表明,襄阳市秋冬季污染天首要污染物均为PM2.5,且随污染程度加重,PM2.5与PM10质量浓度比呈上升趋势,二次颗粒物的形成对PM2.5的贡献更高。在PM2.5化学组分中,水溶性离子占比最大,随着污染程度加重,二次离子(SNA)快速增长,二次离子的生成转化是污染的重要成因。轻度、中度污染时,湿度高、风速小、气温低,有利于污染的积累,重度污染时湿度大、风速回升,有利于上游污染的输送与二次转化。PMF模型解析出襄阳市PM2.5主要来源及贡献率为二次源58.0%、工业企业源22.6%、机动车源10.7%、扬尘源8.7%。襄阳市潜在源区主要分布在河南省中北部、河北省南部、山东省西部、安徽省北部、江汉平原东部及南部区域,极少量分布在襄阳区域,长距离区域传输...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号