首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, soil samples (0-5 cm depth) were taken from ten different roadside fields of intensive traffic regions of Van-Turkey in order to determine the effects of heavy metal pollution on enzymes and microbial activities of soils. Basal soil respiration (BSR), arylsulphatase (ASA), alkaline phosphatase (APA) and urease (UA) enzyme activities, and heavy metal contents (Pb, Cr, Ni, Cd, Fe, Mn, Cu and Zn) of soils significantly changed with 5, 25 and 45 m from the roadside of soil sampling positions. BSR, ASA, APA and UA activities significantly increased while the heavy metal contents generally decreased from the sampling position of 5 m through 25 and 45 m. Significant positive correlations were found among BSR, ASA, APA and UA. Chromium, Mn and Pb contents gave the significant negative correlation with ASA, APA and UA.  相似文献   

2.
New Metal Emission Patterns in Road Traffic Environments   总被引:10,自引:0,他引:10  
The increased awareness of traffic as a major diffuse metal emission source emphasizes the need for more detailed information on the various traffic-related sources and how and where the metals are dispersed. In this study, metal emission patterns in the road traffic environment were examined from the perspective of different surrounding factors, e.g. the importance of intersections, deceleration, vehicle speed and traffic density. A total of 148 topsoil samples from 18 south Swedish roads were analysed (using GFAAS) for traffic-emitted metals, i.e. Cd, Cr, Cu, Ni, Pb, Sb and Zn. The roadside topsoil metal concentrations were used to examine correlations between metals and surrounding factors. The studied metals were divided into three groups corresponding to different emission sources: metals from decelerating activities (Cu, Sb and Zn), metals as historical residues from the combustion of petrol (Pb and Cd), and non-source-specific metals (Cr and Ni). It was found that Cu and Sb, despite their rather short history as traffic-emitted metals, have increased more than eightfold in roadside soils compared to background levels. The major source of road traffic related Cu and Sb is brake linings. The significant increase of Cu and Sb in roadside topsoil stresses the need for metal transport studies as well as effect studies of these metals. Metals emitted due to decelerating activities were not correlated to elevated concentrations near road junctions. Emission patterns of traffic-related metals alongside roads are crucial in order to be able to evaluate the optimal localization of storm water treatment ponds.  相似文献   

3.
Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10?m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10?m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50?cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10?cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10?m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.  相似文献   

4.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

5.
洪泽湖溧河洼水生植物体内重金属调查   总被引:1,自引:0,他引:1  
对洪泽湖溧河洼区域的水生植物进行了Cu、Zn、Pb、Cr和Cd等重金属元素的污染调查与监测分析,结果表明:水生植物对重金属元素的吸收与积累反映了环境中的重金属污染水平,不同水生植物对各种重金属元素的吸收富集状况具有相对一致性,即Zn>Cu>Cr>Pb>Cd。水生植物对各种重金属元素的平均富集系数大小顺序为:Cd>Cu>Zn>Cr>Pb,这与各元素迁移性强弱的顺序也是相一致的,Cd、Cu、Zn等各元素较易为植物所吸收,而Pb的移动性较差。大部分水生植物根部的重金属含量比茎叶部分高。研究表明:可以从中筛选出具有高富集作用的植物,作为修复水体或土壤重金属污染的实验植物,为植物修复作用的研究提供参考。  相似文献   

6.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

7.
包头某铝厂周边土壤重金属污染及健康风险评价   总被引:2,自引:0,他引:2  
以包头市某铝业周边500 m内土壤为研究对象,测定其东北、东南、西北、西南4个方向不同水平距离及深度处土样中Cu、Cd、Pb、Zn、Ni和Cr的含量,并采用地累积指数法和健康风险评价法对重金属污染状况进行评价。结果表明,该区域表层土壤中6种重金属普遍高于内蒙古土壤背景值,且在西南方向50 m处含量最高,人类活动对该区域重金属干扰强烈,而风向对重金属分布影响不大;铝厂周围土壤中Cd、Pb处于中污染-重污染,Cu和Ni处于无污染-中污染,Zn和Cr为无污染,各金属污染程度随土壤深度的增加而减轻;健康风险评价表明,研究区域内Cu、Pb、Ni和Cd均不存在非致癌健康风险,而Cd的致癌危害虽在可接受范围内,但已存在潜在致癌风险,Ni的致癌健康风险指数已超过预警值,应予以高度重视和防治。  相似文献   

8.
There have been a number of studies investigating metal uptake in plants on contaminated landfill sites, but little on their role as biomarkers to identify metal mobility for continuous monitoring purposes. Vegetation can be used as a biomonitor of site pollution, by identifying the mobilisation of heavy metals and by providing an understanding of their bioavailability. Plants selected were the common nettle (Uritica Dioica), bramble (Rubus Fruticosa) and sycamore (Acer Pseudoplatanus). A study of the soil fractionation was made to investigate the soil properties that are likely to influence metal mobility and a correlation exercise was undertaken to investigate if variations in concentration of metals in vegetation can reflect variations in concentration of the metals in soil. The soil was digested using aqua regia in a microwave closed vessel. The vegetation was digested using both microwave and a hydrogen peroxide-nitric acid mixture, refluxed on a heating block and a comparison made. The certified reference materials (CRMs) used were Standard Reference Material (SRM) 1547, peach leaves for vegetation (NIST) and for soil CRM 143R, sewage sludge-amended soil (BCR). The relative standard deviations (RSDs) were 2-6% for the analyses. Our findings show evidence of phytoextraction by some plants, (especially bramble and nettle), with certain plants, (sycamore) exhibiting signs of phytostabilisation. The evidence suggests that there is a degree of selectivity in metal uptake and partitioning within the plant compartments. It was also possible to correlate mobility phases of certain metals (Pb, Cu and Zn) using the soil and plant record. Zn and Cu exhibited the greatest potential to migrate from the roots to the leaves, with Pb found principally in the roots of ground vegetation. Our results suggest that analysis of bramble leaves, nettle leaves and roots can be used to monitor the mobility of Pb in the soil with nettle, bramble and sycamore leaves to monitor Cu and Zn.  相似文献   

9.
The assessment of the toxicants in roadside soil on regular basis has become extremely essential with the increase in awareness for the metal toxicity in the environment. The present study investigates the presence of toxic metals along National Highway (N-5), Pakistan. Averages of about 1.3 million per month of automobile vehicles ply on this route. Lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), cobalt (Co), manganese (Mn), mercury (Hg), and iron (Fe) were analyzed by atomic absorption spectrophotometry in roadside soil at the nine selected locations along the highway. Strong Pearson correlations (α = 0.05) were found between Pb and Zn (r(2)?= 0.887), Fe and Mn (r(2)?= 0.880), Hg and Cd (0.864), Cu and Zn (0.838), and Cu and Pb (0.814). The correlation between the elemental compositions of the main automobile components revealed vehicular traffic as the main non-point source of roadside soil pollution. Extremely high level of mercury, 144.05 mg kg(-1), was found at S5. It was revealed that the unregulated incineration and dumping sites of hazardous waste material along N-5 were also responsible for these contaminations. Multivariate analysis on the obtained data also disclosed the same interpretation. Cluster analysis of the data grouped Pb, Zn, and Cu at 85.23% similarity, whereas, Cd, Hg, and Ni were grouped at 78.75% similarity basis. The findings need swift action against the root cause of soil pollution.  相似文献   

10.
濮阳工业园区土壤重金属背景值及质量评价   总被引:6,自引:5,他引:1  
为了研究濮阳工业园区土壤重金属背景值,采集了该园区及周边土壤46个样品,测定了土壤中重金属Cu、Zn、Pb、Cr、Cd和Ni的含量,并采用污染负荷指数法和潜在生态危害指数法对土壤质量进行了评价。结果表明:工业园区土壤中Cu、Zn、Pb、Cr、Cd、Ni的背景值分别为36.2、118、49.2、40.6、0.125、15.3 mg/kg;Cu、Zn、Pb、Cd的含量高于河南省土壤重金属背景值;Pb为极强污染,Cu、Zn、Cd为中等污染,重金属污染程度从重到轻的排序为PbZnCuCd,表明濮阳工业园区土壤重金属具有轻微的潜在生态危害。  相似文献   

11.
The concentration of heavy metals including Pb, Cu, Zn, Cd, Ni and Fe in different parts of Rosmarinus officinalis medicinal plant grown in Jordan were evaluated. Medicinal plant samples and soil samples were collected from three different zones in Jordan (Irbid, Al-Mafraq and Ma’an). Samples were analyzed by atomic absorption spectrometry (AAS) after chemical treatments using acid digestion procedures. Heavy metal levels in washed and unwashed in each part of R. officinalis were analyzed and compared statistically. Results show that concentrations of investigated heavy metals were varied from plant part to another part of R. officinalis. For example, Pb, Zn, Cu and Cd in most parts of R. officinalis in the three zones were concentrated in the following order: flowers, leaves, stems, whereas Pb, Ni and Fe were concentrated in order as follows: leaves, flowers and stems. Heavy metal concentrations in soil samples was evaluated and correlated with their levels in R. officinalis. Two standard reference materials of plant (SRM 1790a; spinach leaves and CRM 281; rye grass) and one standard reference materials of soil (GBW 07406) were examined to validate the method used. Results show that high recoveries were obtained.  相似文献   

12.
以钢丝绳产业集聚区内的土壤为研究对象,采集和分析产业区中心河两边淹水环境下的水稻田、少用受污染河水灌溉的棉花田及不用受污染河水灌溉的蔬菜地样本,结果表明,产业区内土壤中铅和锌的含量明显高于产业区外。产业区内除水稻田土壤中铅的质量比超过评价参比值外,其他灌溉方式下土壤中铅和锌的质量比均未超过《土壤环境质量标准》(GB 15618-1995)中的二级标准(pH值>7)。统计分析表明,土壤中的重金属含量与废水灌溉方式有关,该产业区内土壤外源重金属来自钢丝绳产业的可能性很大。在不同的灌溉方式下,土壤剖面样品中的重金属含量随着土壤深度增加呈现降低的趋势,2010年和2011年的测定结果无显著差异。  相似文献   

13.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

14.
Soil samples (0-25 cm) have been taken annually since 1991 from three protected plots set up at an upland location at Glensaugh in Aberdeenshire, Scotland. The soils were analysed using the original BCR sequential extraction procedure and the lead isotopic composition was determined in each of the fractions, as well as the unfractionated soil using thermal ionisation mass spectrometry (TIMS). The lead concentrations in all the soils, including those well away from the road, were much higher than typical background values indicating that the whole area has been subject to deposition of anthropogenic lead. The distribution of lead between the different fractions was similar for the two non-roadside soils with most lead present in the oxidizable fraction. Although most lead in the roadside soil was also present in the oxidizable fraction, a substantial proportion (about 10%) was in the easily soluble fraction suggesting that roadside lead could be more mobile than lead in the other soils. Good reproducibility was obtained for the isotope analyses in all the fractions. The ratios calculated for the bulk soil from the ratios in the individual fractions agreed very closely with those measured directly in the unfractionated soil thereby demonstrating both reproducibilty and accuracy. The lowest (206)Pb/(207)Pb ratios were found in the roadside soil consistent with the recent deposition of petrol lead. The (206)Pb/(207)Pb ratios in all fractions of the other soils fell into a narrow band and it was necessary to use (204)Pb ratios to differentiate between lead in the extractable fractions and lead in the residual component. It is probable that lead in the non-roadside soils was deposited a considerable time ago and is characterised by a relatively high (206)Pb/(207)Pb ratio. Use of the (204)Pb ratios showed that the residual components in each of the three soils were isotopically distinct.  相似文献   

15.
The purpose of this study was to investigate the impact of overland traffic on the spatial distribution of heavy metals in urban soils (Istanbul, Turkey). Road dust, surface, and subsurface soil samples were collected from a total of 41 locations along highways with dense traffic and secondary roads with lower traffic and analyzed for lead (Pb), zinc (Zn), and copper (Cu) concentrations. Statistical evaluation of the heavy metal concentrations observed along highways and along the secondary roads showed that the data were bimodally distributed. The maximum observed Pb, Zn, and Cu concentrations were 1,573, 522 and 136 mg/kg, respectively, in surface soils along highways and 99.3, 156, and 38.1 mg/kg along secondary roads. Correlation analysis of the metal concentrations in road dust, surface and 20-cm depth soils suggests the presence of a common pollution source. However, metal concentrations in the deeper soils were substantially lower than those observed at the surface, indicating low mobility of heavy metals, especially for Pb and Zn. A modified kriging approach that honors the bimodality of the data was used to estimate the spatial distribution of the surface concentrations of metals, and to identify hotspots. Results indicate that despite the presence of some industrial zones within the study area, traffic is the main heavy metal pollution source.  相似文献   

16.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

17.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

18.
为了明确三江源智慧生态畜牧业示范区内土壤重金属元素含量特征及潜在风险,2015年7月在三江源智慧生态畜牧业示范区11个示范村镇进行土壤样品采集,带回实验室分析Pb、Cd、Hg、Cr、Cu、Zn、Ni含量。对数据进行统计分析并采用内梅罗综合污染指数和生态危害指数进行风险等级评价。结果显示:部分采样点重金属元素含量高于青海省背景值;Pb、Cr、Cu、Zn、Ni主要受土壤母质的影响,Cd受自然和人为因素的双重影响,Hg主要受人为因素影响;内梅罗综合污染指数显示11个点位的指数都小于1,该地未出现污染状况;生态危害指数显示除GMY点位处于轻微风险等级,其余采样点为中等风险等级。总体上示范区内土壤未出现强污染和面源污染状况,但需要加强点源污染的风险防范。  相似文献   

19.
云南个旧土壤农作物重金属污染特征及潜在风险   总被引:1,自引:0,他引:1  
在实地调查和实验室分析的基础上,对云南省个旧市大屯镇土壤农作物重金属污染状况进行了评价。结果显示:个旧市大屯镇调查区域土壤中Pb、Zn、Cd、As平均质量分数分别为943. 5、454. 8、3. 4、302. 1 mg/kg,分别为国家农用地土壤污染风险管控标准筛选值的7. 8、1. 8、11. 2、10. 1倍,土壤污染严重。土壤Cd的生态危害最强,As、Pb的生态危害次之,Zn表现为轻微的生态危害。从潜在生态危险指数来看,所采集的土壤样品皆表现为极强的生态危害。所采集农作物与食品安全国家标准对比,结果显示,大米中Pb、Cd和As的超标率分别为35%、55%和100%;玉米中Pb、Cd和As的超标率分别为13%、0%和0%;小苦菜Pb、Cd和As的超标率分别为100%、60%、100%;小米菜中Pb、Cd和As的超标率均为100%,蔬菜类的重金属超标情况相对于谷物类较为严重。研究区域土壤样品总量Pb、Zn与有效态皆呈极显著正相关关系,总量Cd与有效态呈弱正相关关系,总量As与有效态表现为相关性不显著。  相似文献   

20.
Understanding regional variations of soil heavy metals and their anthropogenic influence are very important for environmental planning. In this study, 286 surface soil samples were collected in Fuyang county, and the 'total' metals for copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were measured in 2005. Statistic analysis showed that Cu, Zn, Pb and Cd had been added by exterior factors, and Ni was mainly controlled by natural factors. The combination of multivariate statistical and geostatistical analysis successfully grouped three groups (Cu, Zn and Pb; Cd; and Ni) of heavy metals from different sources. Through pollution evaluation, it was found that 15.76% of the study area for Cu, Zn and Pb, and 46.14% for Cd suffered from moderate or severe pollution. Further spatial analysis identified the limestone mining activities, paper mills, cement factory and metallurgic activities were the main sources for the concentration of Cu, Zn, Pb and Cd in soils, and soil Ni was mainly determined by the parent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号