首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes dust explosion research conducted in an experimental mine and in a 20-L laboratory chamber at the Pittsburgh Research Laboratory (PRL) of the National Institute for Occupational Safety and Health (NIOSH). The primary purpose of this research is to improve safety in mining, but the data are also useful to other industries that manufacture, process, or use combustible dusts. Explosion characteristics such as the minimum explosible concentration and the rock dust inerting requirements were measured for various combustible dusts from the mining industries. These dusts included bituminous coals, gilsonite, oil shales, and sulfide ores. The full-scale tests were conducted in the Lake Lynn experimental mine of NIOSH. The mine tests were initiated by a methane–air explosion at the face (closed end) that both entrained and ignited the dust. The laboratory-scale tests were conducted in the 20-L chamber using ignitors of various energies. One purpose of the laboratory and mine comparison is to determine the conditions under which the laboratory tests best simulate the full-scale tests. The results of this research showed relatively good agreement between the laboratory and the large-scale tests in determining explosion limits. Full-scale experiments in the experimental mine were also conducted to evaluate the explosion resistance characteristics of seals that are used to separate non-ventilated, inactive workings from active workings of a mine. Results of these explosion tests show significant increases in explosion overpressure due to added coal dust and indications of pressure piling.  相似文献   

2.
The Pittsburgh Research Laboratory of the National Institute for Occupational Safety and Health (NIOSH) conducted a study of the explosibility of various metals and other elemental dusts, with a focus on the experimental explosion temperatures. The data are useful for understanding the basics of dust cloud combustion, as well as for evaluating explosion hazards in the minerals and metals processing industries. The dusts studied included boron, carbon, magnesium, aluminum, silicon, sulfur, titanium, chromium, iron, nickel, copper, zinc, niobium, molybdenum, tin, hafnium, tantalum, tungsten, and lead. The dusts were chosen to cover a wide range of physical properties—from the more volatile materials such as magnesium, aluminum, sulfur, and zinc to the highly “refractory” elements such as carbon, niobium, molybdenum, tantalum, and tungsten. These flammability studies were conducted in a 20-L chamber, using strong pyrotechnic ignitors. A unique multiwavelength infrared pyrometer was used to measure the temperatures. For the elemental dusts studied, all ignited and burned as air-dispersed dust clouds except for nickel, copper, molybdenum, and lead. The measured maximum explosion temperatures ranged from 1550 K for tin and tungsten powders to 2800 K for aluminum, magnesium, and titanium powders. The measured temperatures are compared to the calculated, adiabatic flame temperatures.  相似文献   

3.
This paper describes experiences and results of experiments with several metallic dusts within the nanometer range. The nano dusts (aluminium, iron, zinc, titanium and copper) were tested in a modified experimental setup for the test apparatus 20 L-sphere (also known as 20-L Siwek Chamber), that enables the test samples to be kept under inert atmospheric conditions nearly until ignition. This setup was already introduced in earlier papers by the authors. It was designed to allow the determination of safety characteristics of nano powders under most critical circumstances (e.g. minimisation of the influence of oxidation before the test itself). Furthermore the influence of passivation on explosion behaviour is investigated and additional tests with deposited dust were carried out to describe the burning behaviour of all dusts. For a better characterisation all samples were tested with a simultaneous thermal analysis (STA). To minimise the influence of oxidation all samples were handled at inert conditions until shortly before ignition or start of the test respectively.  相似文献   

4.
The Siwek 20-L chamber is widely used throughout the world to evaluate the explosibility of dusts. This research evaluated the quality of dust dispersion in the Siwek 20-L chamber using Pittsburgh coal, Gilsonite, and purple K dusts. A Pittsburgh Research Laboratory (PRL) optical dust probe was used to measure optical transmittance through the dust cloud at various locations within the chamber. A total of 540 tests were performed, with triplicate tests at five nominal dust concentrations and six locations. The two standard dispersion nozzles (rebound and perforated annular nozzle) were compared. The transmissions corresponding to the normal ignition delay period were used to: (a) determine variations in spatial uniformity of dispersion obtained with both nozzles; (b) make comparisons between the experimental transmission data and those calculated from theory for the three dusts; and (c) make comparisons with transmission data measured in the PRL 20-L and Fike 1-m3 dust explosion chambers.The uniformity of dispersion for the three dusts was similar with both nozzles, despite the differences in nozzle geometry and mode of operation. Transmission data of the three dusts were all significantly lower than those calculated from theory. This was discovered to be, in part, due to significant reduction in particle size that occurred during dispersion. By measuring particle sizes before and after dispersion, values of 60%, 50%, and 20% reduction in particle size (based on the surface-weighted mean diameter) were obtained for Pittsburgh coal, Gilsonite, and purple K, respectively. Transmission data from the PRL 20-L, Fike 1-m3 and the Siwek 20-L chambers indicated comparable results in terms of uniformity of dispersion. However, transmission data from the Siwek 20-L chamber were significantly lower than those of the PRL and Fike chambers. Again, this was attributed, in part, to the significant reduction in particle size that occurred during dispersion in the Siwek chamber. The design of the outlet (dispersion) valve of the Siwek 20-L apparatus charge vessel was largely responsible for the particle break-up. The contribution to particle break-up by the dispersion nozzles and the high level of turbulence in the chamber were found to be minimal. This is a significant finding in that the dust particle size tested for explosibility in the Siwek chamber is considerably smaller than the original dust sample.  相似文献   

5.
The Atex Directive specifically includes the explosion hazards arising from the presence of flammable dusts. The European standards body CENELEC proposed a research project to develop tests for assessing the ignition hazard due to electrical apparatus used in hazardous dusty environments. This paper describes the work done on developing a test for electrical spark ignitions of explosive dust atmospheres. A prototype apparatus incorporating the dust explosibility vertical tube and the STA break flash apparatus has been developed. Tests using three dusts showed sulphur dust had ignition characteristics close to those of gas Group B, while other dusts were much less easily ignitable than methane. Round robin tests using a duplicate apparatus and the proposed test method produced results very close to those obtained using the original apparatus.  相似文献   

6.
Experiments were performed to investigate the self-ignition behaviour of accumulations of four different technical dusts at oxygen volume fractions ranging from 1.3 to 21%. For this purpose a laboratory oven used for hot storage testing was modified to allow flushing with the pre-mixed oxygen/nitrogen mixture of the desired composition. It was found that for all sample volumes investigated the self-ignition temperatures were higher the lower was the oxygen volume fraction. In addition, the type of reaction changed obviously, since the apparent activation energy significantly decreased at oxygen volume fractions below 6%. However, it was still possible to observe exothermic effects at oxygen volume fractions as low as 1.3%. A numerical model was established to simulate the process of self-ignition including the coupled heat and mass transfer within the dust accumulation using a finite element solver. The model consists of six balance equations for the heat transfer and the transport of five chemical species. It shows that the model reflects self-ignition in dust accumulations with satisfying accuracy, as long as the input data generated by preceding experiments are reliable.  相似文献   

7.
张启波  仇昱皎 《安全》2019,40(5):19-23
本文以一起锌粉爆炸事故为例,叙述锌粉爆炸事故的发生过程,探究爆炸事故发生的直接原因和间接原因,应用Semenov热自燃理论揭示了本次事故发生规律。结合事故原因分析,考虑防止除尘器积尘及控制二次扬爆,研究设计了新型除尘器,经计算管道中最低风速要求16.3m/s,喷锌间内的风速0.25~0.5m/s,可有效减少粉尘积聚,风管设计中拆除原除尘器中采用的挡板,减少弯管的使用,可避免风管积尘。新型除尘器自动化性能高,可降低由于积尘、超温引发粉尘爆炸事故的概率,对减少人员伤亡和降低经济损失有重要意义,现已投入生产运行,具有一定的工程应用价值和推广价值。  相似文献   

8.
For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested.The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system.Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results.  相似文献   

9.
Handling combustible dusts not only continues to pose a risk to industry but can also affect the safety of society. Explosion risk could be avoided or mitigated trying to guarantee inherent safety throughout the product life chain. One way to reduce the risks when dealing with combustible dust is to increase the Minimum Ignition Energy (MIE) in order to decrease combustible dust ignition sensitivity. To achieve this decrease, the inertization technique, also known as moderation, will be used. It consists of adding inert powders or humidity to the combustible dust. As sometimes end-users also must deal with the handling of flammable dusts, this study aims to find the most optimal inert for toner waste from printers and Holi powder (organic coloured dust from Indian parties), taking Lycopodium as a reference. Calcium carbonate, sodium bicarbonate and gypsum are proposed as inert materials. In addition, with the aim of giving a second use to biomass boiler waste or boiler slagging, this waste will be analyzed as inert, as well as how humidity affects the combustible dusts. Then, sodium bicarbonate will be tested at different granulometries to evaluate the effect of particle size on moderation process. The tests were carried out in the modified Hartmann apparatus or MIKE 3.0. Mechanisms such as decomposition of inert dust have been analyzed by thermogravimetric analysis (TGA)). The results show that gypsum and moisture are the best performing inert followed by calcium carbonate. Boiler slagging and solid bicarbonate contribute to a decrease in the MIE in some of the tests. The reasons for this deviation are discussed in the presented article. When sodium bicarbonate is analyzed at different particle sizes, it is found that the optimum particle size does not match the particle size of the combustible dust. According to the tests, there is an optimum point for which the inert powder provides better results.  相似文献   

10.
To evaluate the explosion hazard of ITER-relevant dusts, a standard method of 20-l-sphere was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The effect of dust particle size was studied on the maximum overpressures, maximum rates of pressure rise, and lower explosive concentrations of graphite dusts in the range 4 μm to 45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The explosibility of these dusts and mixtures were evaluated. The dusts tested were ranked as St1 class. Dust particle size was shown to be very important for explosion properties. The finest graphite dust appeared to have the lowest minimum explosion concentration and be able to explode with 2 kJ ignition energy.  相似文献   

11.
The research presented in this paper is focused on dust explosions of coarse and fine flocculent (or fibrous) samples of wood and polyethylene. Hybrid mixtures of fibrous polyethylene and admixed ethylene were also studied. Experimentation was conducted by following standardized test procedures and using standardized apparatus for determination of maximum explosion pressure, size-normalized maximum rate of pressure rise, minimum explosible concentration, minimum ignition energy, and minimum ignition temperature. A general trend was observed of enhanced explosion likelihood and consequence severity with a decrease in material diameter, as well as enhanced consequence severity with admixture of a flammable gas to the combustion atmosphere. The same phenomena are well-established for dusts composed of spherical particles; this highlights the importance of inherently safer design and the principle of moderation in avoiding the generation of fine sizes of flocculent dusts and hybrid mixtures of such materials with flammable gases.In addition to presenting experimental findings, the paper describes phenomenological modelling efforts for the flocculent polyethylene using four geometric equivalence models: radial equivalence, volumetric equivalence, surface area equivalence, and specific surface area equivalence. The surface area equivalence model was found to yield the best estimates of maximum rate of pressure rise for the flocculent polyethylene samples investigated experimentally.  相似文献   

12.
Dust explosions continue to pose a serious threat to the process industries handling combustible powders. According to a review carried out by the Chemical Safety Board (CSB) in 2006, 281 dust explosions were reported between 1980 and 2005 in the USA, killing 119 workers and injuring 718. Metal dusts were involved in 20% of these incidents. Metal dust deflagrations have also been regularly reported in Europe, China and Japan.The term “metal dusts” encompasses a large family of materials with diverse ignitability and explosibility properties. Compared to organic fuels, metal dusts such as aluminum or magnesium exhibit higher flame temperature (Tf), maximum explosion pressure (Pmax), deflagration index (KSt), and flame speed (Sf), making mitigation more challenging. However, technological advances have increased the efficiency of active explosion protection systems drastically, so the mitigation of metal dust deflagrations has now become possible.This paper provides an overview of metal dust deflagration suppression tests. Recent experiments performed in a 4.4 m3 vessel have shown that aluminum dust deflagrations can be effectively suppressed at a large scale. It further demonstrates that metal dust deflagrations can be managed safely if the hazard is well understood.  相似文献   

13.
Two types of flammability limits have been measured for various dusts in the Fike 1-m3 (1000-L) chamber and in the Pittsburgh Research Laboratory (PRL) 20-L chamber. The first limit is the minimum explosible concentration (MEC), which was measured at several ignition energies. In addition to the three dusts studied previously (bituminous coal, anthracite coal, and gilsonite), this work continues the effort by adding three additional dusts: RoRo93, lycopodium, and iron powder. These materials were chosen to extend the testing to non-coal materials as well as to a metallic dust. The new MEC data corroborate the previous observations that very strong ignitors can overdrive the ignition in the smaller 20-L chamber. Recommendations are given in regard to appropriate ignition energies to be used in the two chambers. The study also considered the other limiting component, oxygen. Limiting oxygen concentration (LOC) testing was performed in the same 20-L and 1-m3 vessels for gilsonite, bituminous coal, RoRo93, and aluminum dusts. The objective was to establish the protocol for testing at different volumes. A limited investigation was made into overdriving in the 20-L vessel. The LOC results tended to show slightly lower results for the smaller test volume. The results indicated that overdriving could occur and that ignition energies of 2.5 kJ in the 20-L vessel would yield comparable results to those in the 1-m3 vessel using 10.0 kJ. The studies also illustrate the importance of dust concentration on LOC determinations.  相似文献   

14.
The rate of propagation of flame and the rate of propagation of smouldering in still air, have been investigated for several particle sizes, mixtures of coarse and fine dusts of the same material, and mixtures containing partially coarse dusts of limestone. Wood sawdust and grass dust were used as the industrial materials. Measurements were made by using a mold of acceptable dimensions. The results obtained indicated that the flaming and smouldering rates are dependent on the particle size and the depth of the layer and the values of the smouldering rates were found to be about 20% of the values obtained with flaming. Also, an admixture of fine dust of 50% of the same material to coarse dust for a 0.5 cm layer of both materials is sufficient to increase the values of the flaming rate by 61% for wood sawdust and the smouldering rate by 88% and 52% for wood sawdust and grass dust, respectively. The admixture of limestone as low as 10% was sufficient to produce zero propagation for both types of burning.  相似文献   

15.
In recent years some explosibility experiments were carried out by LOM (Spain) to look into the behaviour of the combustible dusts at hyperbaric pressures. In this way, different aspects were studied, such as the effect of initial pressure on the explosion development, the influence of the effective present turbulence or preventative existing techniques such as inertization.This paper contains a summary of the different tests performed, which covered a range of initial pressure from 1 to 15 bar. Several fuels were used within the works, and their main features are described to facilitate understanding the results.  相似文献   

16.
An investigation into the limiting oxygen concentration (LOC) of fifteen combustible dusts and methane, ethanol and isopropanol hybrid mixtures in the standard 20 L explosion chamber was performed. Three ignition energies (10 J, 2 kJ and 10 kJ) were used. The results show that a 10 J electrical spark ignition leads to significantly higher limiting oxygen concentration values than either 2 kJ or 10 kJ pyrotechnic igniters. This could be due to the “overdriving” effect of the chemical igniters, which produce a hot flame that virtually covers the entire explosion chamber during combustion. With respect to hybrid mixture investigation, the 20 L sphere was modified to allow the input of methane gas and flammable solvents. The limiting oxygen concentrations of the hybrid mixtures were found to be considerably lower than those of dust air mixtures when the relatively weaker spark igniter was used. There was no significant change in limiting oxygen concentration when the higher energy chemical igniters were used.  相似文献   

17.
The Mine Safety and Health Administration (MSHA) specification for rock dust used in underground coal mines, as defined by 30 CFR 75.2, requires 70% of the material to pass through a 200 mesh sieve (<75 μm). However, in a collection of rock dusts, 47% were found to not meet the criteria. Upon further investigation, it was determined that some of the samples did meet the specification, but were inadequate to render pulverized Pittsburgh coal inert in the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) 20-L chamber. This paper will examine the particle size distributions, specific surface areas (SSA), and the explosion suppression effectiveness of these rock dusts. It will also discuss related findings from other studies, including full-scale results from work performed at the Lake Lynn Experimental Mine. Further, a minimum SSA for effective rock dust will be suggested.  相似文献   

18.
Explosion behaviors of typical light metal and carbonaceous dusts induced by different ignition energies were investigated based on systematic experiments in a Siwek 20 L vessel. Comparative analysis reveals that the explosion mechanism of carbonaceous dust is the volatile combustion, whereas the mechanism for light metal dust mainly features the surface heterogeneous oxidation. Influences of ignition energy on severity and flammability limit are much more significant for carbonaceous dust than light metal, especially for the powder with less volatile. An innovative approach was introduced to derive flame thickness from the pressure–time trace. The relation between explosion induction time and combustion duration of ignitor was also analyzed. Results show inappropriate ignition energy will cause under-/over-driving in the thermodynamic/kinetic characteristic measurements. In this way, a dimensionless parameter pressure ratio was introduced to evaluate the under-driving, while two methods by using flame thickness and induction time respectively, were proposed to evaluate over-driving. To improve the accuracy of dust explosion tests, authors advocate that explosion severity determination should be conducted at the critical ignition energy. Moreover, a comparison between the European and Chinese flammability limit determination procedures was also conducted, indicating that EN 14034-3 is suitable for light metal but not for carbonaceous, while GB/T 16425 appears to be slightly conservative for both carbonaceous and light metal dusts.  相似文献   

19.
An experimental program has been undertaken to investigate the explosibility of selected organic dusts. The work is part of a larger research project aimed at examination of a category of combustible dusts known as marginally explosible. These are materials that appear to explode in laboratory-scale test chambers, but which may not produce appreciable overpressures and rates of pressure rise in intermediate-scale chambers. Recent work by other researchers has also demonstrated that for some materials, the reverse occurs – i.e., values of explosion parameters are higher in a 1-m3 chamber than one with a volume of 20 L. Uncertainties can therefore arise in the design of dust explosion risk reduction measures.The following materials were tested in the current work: niacin, lycopodium and polyethylene, all of which are well-known to be combustible and which cover a relatively wide range of explosion consequence severity. The concept of marginal explosibility was incorporated by testing both fine and coarse fractions of polyethylene. Experiments were conducted at Dalhousie University using the following equipment: (i) Siwek 20-L explosion chamber for determination of maximum explosion pressure (Pmax), volume-normalized maximum rate of pressure rise (KSt), and minimum explosible concentration (MEC), (ii) MIKE 3 apparatus for determination of minimum ignition energy (MIE), and (iii) BAM oven for determination of minimum ignition temperature (MIT). Testing was also conducted at Fauske & Associates, LLC using a 1-m3 explosion chamber for determination of Pmax, KSt and MEC. All equipment were calibrated against reference dusts, and relevant ASTM methodologies were followed in all tests.The explosion data followed known trends in accordance with relevant physical and chemical phenomena. For example, Pmax and KSt values for the fine sample of polyethylene were higher than those for the coarse sample because of the decrease in particle size. MEC values for all samples were comparable in both the 20-L and 1-m3 chambers. Pmax and KSt values compared favorably in the different size vessels except for the coarse polyethylene sample. In this case, KSt determined in a volume of 1 m3 was significantly higher than the value from 20-L testing. The fact that the 20-L KSt was low (23 bar m/s) does not indicate marginal explosibility of the coarse polyethylene. This sample is clearly explosible as evidenced by the measured values of MEC, MIE, MIT, and 1-m3 KSt (at both 550 and 600 ms ignition delay times).  相似文献   

20.
Experience gained in the chemical industry in testing and assessing the thermal safety of chemical processes is published in this paper. Isothermal and adiabatic tests, which are the most important methods for both small and large quantities, are described and discussed. Methods for testing the thermal hazards of primary or desired reactions are also included, e.g. reaction calorimetry, adiabatic methods, investigations using a sampling method. More important are the criteria for assessing the test results. On the basis of energies produced by primary and secondary reactions and the temperature ranges within which they take place, thermal hazards can be predicted. If the rules for the safe design of batch and semi-batch reactions are observed, it is possible to control the thermal behaviour of reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号