首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose nanocrystals (CNC) were isolated from sisal fibres and were incorporated in the form of an aqueous suspension to a waterborne polyurethane (WBPU) synthesized from components derived from natural sources using an aliphatic diisocyanate. Transparent nanocomposite films with different CNC contents were prepared using a casting method. The morphology, thermal behaviour and mechanical properties of the nanocomposite films were characterized. Homogeneous distribution of CNC in the WBPU, even at high CNC contents was observed, resulting in an increase of 100% in modulus for systems with 5 and 10 wt% of CNC, with high elongations around 650%.  相似文献   

2.
Cellulose gel films were prepared by regeneration process using pre-cooled aq.(8 wt% LiOH + 15 wt% urea) mixture as solvent and ethyl alcohol as non solvent. The Terminus cattapa leaf extract diffused wet cellulose films were then dipped in 1–5 mM aq.AgNO3 solutions to allow in situ generation of silver nanoparticles (AgNPs). Besides the in situ generation, some AgNPs were also formed outside the wet films in the solution. The AgNPs formed outside the films were observed under transmission electron microscope and scanning electron microscope. The nanocomposite films were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis and tensile test. The thermal stability of the composite films was lower than that of the matrix up to a temperature of ~300 °C and afterwards showed a reverse trend. The tensile strength of the nanocomposite films was found to be higher than the matrix but decreased with increasing concentration of aq.AgNO3. The cellulose/AgNPs composite films showed good antibacterial activity against E. coli (gram positive) and Bacillus sp. (gram negative). Based on the aforementioned properties, the cellulose/AgNPs composite films can be considered for antibacterial packaging and medical applications.  相似文献   

3.
The objective of this work was to isolate cellulose nanocrystal (CNC) from oil palm fronds (Elaeis guineensis) and its subsequent characterization. Isolation involves sodium hydroxide/anthraquinone pulping with mechanical refining followed by total chlorine free bleaching (includes oxygen delignification, hydrogen peroxide oxidation and peracetic acid treatment) before acid hydrolysis. Bleaching significantly decreased kappa number and increased α-cellulose percentage of fibers as confirmed by Technical Association of the Pulp and Paper Industry standards. Transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis revealed that acid hydrolysis along with bleaching improved crystallinity index and thermal stability of the extracted nanocrystals. It was observed that CNC maintained its cellulose 1 polymorph despite hydrolysis treatment. Mean diameter as observed by TEM and average fiber aspect ratio of obtained CNC was 7.44 ± 0.17 nm and 16.53 ± 3.52, respectively making it suitable as a reinforcing material for nanocomposite.  相似文献   

4.
This paper reports the preparation of cellulose/xanthan gum composite films and hydrogels through gelation with an ionic liquid. Mixtures of cellulose and xanthan gum in desired weight ratios with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), were thinly placed on a Petri dish and heated at 100 °C for 9 h to obtain the solutions. Then, the solutions were left standing at room temperature for 1 day for the progress of gelation. The resulting ion gels were subjected to Soxhlet extraction with ethanol to remove BMIMCl, followed by drying under ambient conditions to obtain the composite films. The crystalline structures of the polysaccharides and the mechanical properties were evaluated by powder X-ray diffraction measurement and tensile testing of the films, respectively. The ion gels in various cellulose/xanthan gum weight ratios, which were prepared in a test tube by the same procedure, were immersed in water for the exchange of disperse media to obtain the cellulose/xanthan gum composite hydrogels. Water contents of all the materials were higher than 90 %. The mechanical properties of the hydrogels were evaluated by compressive testing.  相似文献   

5.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

6.
Poly(lactic acid) (PLA) is a biodegradable polymer that exhibits high elastic modulus, high mechanical strength, and feasible processability. However, high cost and fragility hinder the application of PLA in food packaging. Therefore, this study aimed to develop flexible PLA/acetate and PLA/chitosan films with improved thermal and mechanical properties without the addition of a plasticizer and additive to yield extruder compositions with melt temperatures above those of acetate and chitosan. PLA blends with 10, 20, and 30 wt% of chitosan or cellulose acetate were processed in a twin-screw extruder, and grain pellets were then pressed to form films. PLA/acetate films showed an increase of 30 °C in initial degradation temperature and an increase of 3.9 % in elongation at break. On the other hand, PLA/chitosan films showed improvements in mechanical properties as an increase of 4.7 % in elongation at break. PLA/chitosan film which presented the greatest increase in elongation at break proved to be the best candidate for application in packaging.  相似文献   

7.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

8.
Life cycle analysis (LCA) of limonene plasticized poly(lactic acid) (PLA) films containing cellulose nanocrystals (CNC) extracted, by acid hydrolysis, from Phormium tenax leaf fibres, was assessed and compared with the results of acetyl tributyl citrate (ATBC) plasticized PLA films, having equivalent mechanical properties, containing organo-modified montmorillonite (OMMT). Eco-Indicator 99 tool has been adopted as the main method for life cycle assessment. Results indicated that, despite CNC are biobased fillers obtained by natural sources, the related chemical extraction leads to a large environmental footprint and a relatively relevant energy expense. LCA characterization of these films demonstrated that the environmental impact of PLA/limonene film reinforced with 1% in weight of CNC (PLA/CNC/limonene) is comparable to the environmental impact of polylactic acid films reinforced with OMMT and plasticized with a petroleum based plasticizer (ATBC) (PLA/OMTT/ATBC). A “cradle to gate” approach has been considered for both the film typologies.  相似文献   

9.
Cellulose nanocrystals with an acicular structure ranged from 100 to 200 nm in length and 15 nm in width were extracted from Phormium tenax leaf fibres by acid hydrolysis. A two-step procedure for the extraction of nano-sized cellulose was studied and the obtained nanocrystals were characterized using morphological investigations (optical, scanning electron and atomic force microscopy), as well as physico-chemical characterization by Wide Angle X-ray Scattering, infrared spectroscopy and thermogravimetric analysis. A study of birefringence properties was also performed. The first chemical treatment leads to the production of holocellulose by the gradual removal of lignin, while the subsequent sulphuric acid hydrolysis process allows obtaining cellulose nanocrystals in an aqueous suspension. The results reported support the repeatability and the effectiveness of the procedure performed. Moreover, the high cellulose content of P. tenax fibre and their declining market interest, suggest the interest of this investigation and the possibility to use natural fibres for the production of a reinforcement phase to involve in the nanocomposite approach for industrial applications.  相似文献   

10.
This article presents approaches to maximize the mechanical performance of bacterial cellulose/poly(lactic acid) composites through chemical modification of the interface. This is achieved by both cross-linking the layered bacterial cellulose structure and by grafting maleic anhydride to the matrix material. Unmodified and glyoxalized bacterial cellulose (BC) networks have been embedded in poly(lactic acid) (PLA) resin and then in maleated resin using a compression molding method. The effect of these chemical modifications on the physical properties of these composites is reported. The tensile properties of the composites showed that Young??s moduli can be increased significantly when both BC networks and PLA were chemically modified. Interface consolidation between layers in BC networks has been achieved by glyoxalization. The effect of these modifications on both stress-transfer between the fibers and between the matrix and the fibers was quantified using Raman spectroscopy. Two competitive deformation mechanisms are identified; namely the mobility between BC layers, and between BC and PLA. The coupling strength of these interfaces could play a key role for optimization of these composites?? mechanical properties.  相似文献   

11.
Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.  相似文献   

12.
In this study, engineering thermoplastic composites were prepared from microcrystalline cellulose (MCC)-filled nylon 6. MCC were added to nylon 6 using melt mixing to produce compounded pellets. The MCC-filled nylon 6 composites with varying concentrations of MCC (from 2.5 to 30 wt%) were prepared by injection molding. The tensile and flexural properties of the nylon 6 composites were increased significantly with the addition of MCC. The maximum strength and modulus of elasticity for the nylon 6 composites were achieved at a MCC weight fraction of 20 %. The Izod impact strength of composites decreased with the incorporation of MCC without any surface treatments and coupling agent. This observation is quite expected for filled polymer systems and has been commonly observed. There was a strong correlation between density and tensile (r = 0.94) and flexural modulus of elasticity (r = 0.9). MCC filled composites manufactured by injection method had highly uniform density distribution through their thickness. The higher mechanical results with lower density demonstrate that MCC can be used as a sufficient reinforcing material for low cost, eco-friendly composites in the automotive industry especially for under-the-hood applications (engine covers, intake manifolds and radiator end tanks) as well as in other applications such as the building and construction industries, packaging, consumer products etc.  相似文献   

13.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

14.

Nowadays, the importance of green and biodegradable plastics as viable substitutes for non-degradable petroleum-based materials is felt more than ever. Regenerated cellulose (RC) as a potential candidate suffers from poor processability and inferior properties, limiting its wide applications. In this study, it is demonstrated that citric acid (CA) enhances physical, mechanical, and thermal properties of RC films, due to RC-citric acid compatibility. 1-ethyl-3-methylimidazolium chloride (EMIMCl) as a green ionic liquid was employed for the processing of RC. The optimum properties in terms of thermal stability, mechanical strength, contact angle, water uptake, and oxygen permeability were achieved at 10 wt% of CA. However, further incorporation of CA adversely affected the film properties. This behaviour was explained by the crosslinking and plasticizing effects of CA. Furthermore, in vitro cytotoxicity test demonstrated that RC/CA films are cytocompatible, suggesting the potential advantage of using these biopolymeric films for biomaterial and biological applications.

  相似文献   

15.
Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.  相似文献   

16.
Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.  相似文献   

17.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

18.
In the present study, hybrid electrospun polylactide (PLA) fibers reinforced with highly dispersed crystalline bacterial cellulose nanowhiskers (BCNW) in solution concentrations up to 15 wt% were developed and characterized. The overall aim was to encapsulate dispersed BCNW in fibers to be later re-dispersed in virgin PLA by melt compounding. Initially, the suitability of three different solvents [1,1,1,3,3,3-hexafluoro-2-propanol (HFP), acetone–chloroform and chloroform/polyethylene glycol (PEG)] for fiber production was evaluated and solutions containing 5 wt% BCNW were used to generate electrospun hybrid PLA fibers. These fibers presented a homogeneous morphology, as assessed by scanning electron microscopy, and transmission electron microscopy images demonstrated that BCNW were well distributed along the fibers. Differential scanning calorimetry analyses showed that the incorporation of PEG into the fibers resulted in a Tg drop due to a plasticization effect and decreased thermal stability as a result of low interactions between the matrix and the BCNW. Subsequently, fibers were produced from the selected solutions (HFP and acetone–chloroform) containing up to 15 wt% BCNW. As a result of the great increase in the viscosity of the solutions, lower solids contents were required, leading to a better dispersion and incorporation degree of BCNW within the fibers. HFP was found to be a more suitable solvent, since higher incorporation levels were estimated by X-ray diffraction and improved matrix–filler interactions were suggested by a slight increase in the Tg of the fibers.  相似文献   

19.
The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.  相似文献   

20.
The addition of plasticizers to biopolymer films is a good method for improving their physicochemical properties. The aim of this study was to evaluate the effect of chitosan (CHI) blended with two hydrophilic plasticizers glycerol (GLY) and sorbitol (SOR), at two concentrations (20 and 40 wt%) on their mechanical, thermal, barrier, structural, morphological and antimicrobial properties. The chitosan was prepared through the alkaline deacetylation of chitin obtained from fermented lactic from shrimp heads. The obtained chitosan had a degree of deacetylation (DA) of 84 ± 2.7 and a molecular weight of 136 kDa, which indicated that a good film had formed. The films composed of CHI and GLY (20 wt%) exhibited the best mechanical properties compared to the neat chitosan film. The percentage of elongation at break increase to over 700 % in the films that contained 40 % GLY, and these films also exhibited the highest values for the water vapor transmission rate (WVTR) of 79.6 ± 1.9 g m2 h?1 and a yellow color (b o  = 17.9 ± 2.0) compared to the neat chitosan films (b o  = 8.8 ± 0.8). For the structural properties, the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses revealed an interaction in the acetamide group and changes in the crystallinity of plasticized films. The scanning electron micrographs revealed that all formulations of the chitosan films were smooth, and that they did not contain aggregations, pores or microphase separation. The thermal analysis using differential scanning calorimetry (DSC) revealed a glass transition temperature (Tg) of 130 °C for neat chitosan film, but the addition of SOR or GLY elicited a decrease in the temperature of the peak (120 °C). In addition, the antimicrobial activity of the chitosan films was evaluated against Listeria monocytogenes, and reached a reduction of 2 log after 24 h. The plasticizer concentration of 20 % GLY is sufficient for obtaining flexible chitosan films with good mechanical properties, and it could serve as an alternative as a packaging material to reduce environmental problems associated with synthetic packaging films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号