首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric gas and particle-phase carboxylic acids were measured during July 1996, Winter, in an urban area of São Paulo, a highly polluted Latin American city. Ion chromatography and capillary electrophoresis techniques were used to determine the species. As oxalic (36.2±21.4%), pyruvic (15.0±7.9%), β-hydroxy-butyric (9.15±9.00%) and glycolic (3.55±2.26%) acids were determined in aerosol particles, formic and acetic acids were determined both in the gaseous (4.36±2.70 and 3.66±2.63 ppbv, respectively) and particulate phases (17.8±12.4 and 18.2±9.8%, respectively). Approximately 98% of the total acetic and formic acids were in the gas-phase and the gas–aerosol equilibrium was influenced by high levels of relative humidity. Gaseous formic-to-acetic ratios fell in the 0.94–1.85 range. Photochemical production appeared to be a very likely source of the gaseous acetic and formic acid levels found in this investigation. Direct emissions, mainly motor exhaust of vehicles also contributed to their presence in air.The observed amounts of formic and acetic acids in the particle phase were comparable with those observed in other urban sites. Results from aerosol particles indicated lower concentrations of the carboxylic acids at night, but their diurnal and nocturnal variation were similar.Using a correlation matrix, it was possible to suggest some sources for the carboxylic acids in the particulate phase. During daytime, vehicular emission appeared to be the primary source of acetic acid, whereas formic and pyruvic acids should be formed photochemically. Moreover, emissions from biogenic primary sources appeared to be an important contribution to atmospheric concentrations of formic and glycolic acids. Presumably, the photooxidation of pyruvic and glycolic acids gave rise to the oxalic acid.No source for acetic and pyruvic acids at nighttime was possible to suggest. However, direct vehicular and biogenic emissions might be major sources of TOC in nocturnal measurements. Oxalic acid might result from vehicular emission, glycolic acid from biogenic emission and formic acid from both sources.  相似文献   

2.
Recent studies suggest that dairy operations may be a major source of non-methane volatile organic compounds in dairy-intensive regions such as Central California, with short chain carboxylic acids (volatile fatty acids or VFAs) as the major components. Emissions of four VFAs (acetic acid, propanoic acid, butanoic acid and hexanoic acid) were measured from two feed sources (silage and total mixed rations (TMR)) at six Central California Dairies over a fifteen-month period. Measurements were made using a combination of flux chambers, solid phase micro-extraction fibers coupled to gas chromatography mass spectrometry (SPME/GC–MS) and infra-red photoaccoustic detection (IR-PAD for acetic acid only). The relationship between acetic acid emissions, source surface temperature and four sample composition factors (acetic acid content, ammonia-nitrogen content, water content and pH) was also investigated. As observed previously, acetic acid dominates the VFA emissions. Fluxes measured by IR-PAD were systematically lower than SPME/GC–MS measurements by a factor of two. High signals in field blanks prevented emissions from animal waste sources (flush lane, bedding, open lot) from being quantified. Acetic acid emissions from feed sources are positively correlated with surface temperature and acetic acid content. The measurements were used to derive a relationship between surface temperature, acetic acid content and the acetic acid flux. The equation derived from SPME/GC–MS measurements predicts estimated annual average acetic acid emissions of (0.7 + 1/?0.4) g m?2 h?1 from silage and (0.2 + 0.3/?0.1) g m?2 h?1 from TMR using annually averaged acetic acid content and meteorological data. However, during the summer months, fluxes may be several times higher than these values.  相似文献   

3.
The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200–600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.  相似文献   

4.
The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53.Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.  相似文献   

5.
Concentrations of formic and acetic acids in Wilmington, North Carolina, USA, rainwater collected between 1996 and 1998 have increased dramatically since an earlier study conducted at the same site between 1987 and 1989. The current volume-weighted concentrations of acetic acid are within the range of values reported for urban locations whereas values from the earlier study at this site were similar to those obtained for rural locations. The ratios of formic to acetic acids (F : A) in the current study (approximately 1 : 1) are considerably lower than those previously reported (approximately 2.7 : 1). Current F : A's are similar to F : A's from direct automobile emissions. Increases in formic and acetic acid concentrations and the shift in formic to acetic acid ratios likely reflect the impact of extensive population growth in the surrounding region. Assuming increases in formic and acetic acid concentrations result from increased anthropogenic sources, we estimate at least 1/2 of the formic and at least 2/3 of the acetic acid in Wilmington, NC growing season rainwater results from anthropogenic sources.  相似文献   

6.
A 12 month study of urban concentrations of total suspended particulates (TSP) and 20 polycyclic aromatic hydrocarbons (PAH) was carried out in Seoul (South Korea), Hong Kong, Bangkok (Thailand), Jakarta (Indonesia) and Melbourne (Australia). Concentrations of particulate matter in the atmosphere varied widely between the cities over the course of the study, ranging from a low of 24.1 μg m−3 in Melbourne during the winter to a high of 376.2 μg m−3 in Jakarta during the dry season. Seasonal variations in both TSP and PAH were observed in the tropical cities in the study with higher concentrations during the dry season and lower concentrations during the wet season. TSP and PAH concentrations are correlated with each other in these cities, suggesting that they have related sources and sinks for these cities. In the temperate cities of Melbourne and Seoul, PAH concentrations were higher during the cold winter season and lower during the warm summer. However, TSP was quite variable over the years in these latter cities and no clear seasonal trend was observed. A number of factors have been investigated which could be contributing to seasonal variations in pollutant levels. In the temperate climates, increased emissions due to the use of fossil fuels for heating in the winter is evident. However, an interrogation of the database with respect to the other factors such as (1) increased photolytic degradation during the summer, (2) transport of pollutants from other sources, (3) removal of PAH via wet deposition and in-cloud scavenging mechanisms and (4) volatilisation of lower molecular weight species during periods of high temperature indicates the importance of multiple processes. Even though there are clearly much lower levels of both particulates and PAH in the wet season of the tropical climates, no statistically significant correlations have been observed between rainfall levels and pollutant concentrations.  相似文献   

7.
This study reports a general assessment of the organic composition of the PM2.5 samples collected in the city of Augsburg, Germany in a summer (August-September 2007) and a winter (February-March 2008) campaign of 36 and 30 days, respectively. The samples were directly submitted to in-situ derivatisation thermal desorption gas chromatography coupled with time of flight mass spectrometry (IDTD-GC-TOFMS) to simultaneously determine the concentrations of many classes of molecular markers, such as n-alkanes, iso- and anteiso-alkanes, polycyclic aromatic hydrocarbons (PAHs), oxidized PAHs, n-alkanoic acids, alcohols, saccharides and others.The PCA analysis of the data identified the contributions of three emission sources, i.e., combustion sources, including fossil fuel emissions and biomass burning, vegetative detritus, and oxidized PAHs. The PM chemical composition shows seasonal trend: winter is characterized by high contribution of petroleum/wood combustion while the vegetative component and atmospheric photochemical reactions are predominant in the hot season.  相似文献   

8.
A trajectory statistics method has been used to examine the causes of variability and seasonality of sulphur dioxide, particulate sulphate and non-sea-salt sulphate in precipitation measured at a French rural site. This methodology has permitted to define the likely contributing sources for two seasons, a warm and a cold, that show different patterns. The general results suggest the impact of the long-range transport of SO2 and SO2 secondary species from high anthropogenic sources. The increase of photochemical activity during the warm period, the seasonal large-scale wind movements responsible for precipitation and the removal processes during atmospheric transport may also significantly influence sulphur concentrations at Morvan.  相似文献   

9.
Boron (B) concentrations and isotopic compositions were measured in the precipitations of Guiyang, China for one year. Most precipitation samples have boron concentrations of from 2.1 to 4.8 ng ml?1, and δ11B values of from +2.0‰ to +30.0‰. Boron concentrations and δ11B values of heavy rain samples are generally higher than those of light rain and snow samples. Anthropogenic inputs provided most of the SO42? and NO3?, which were predominant ions in the precipitation. The major cation Ca2+ in the precipitation was mainly originated from local dust.The total boron in precipitation from Guiyang is explained by the mixing model of three boron sources. Assuming a δ11B value of +45‰ for the seawater component, contributions of marine source, organic matter and biomass combustion, and coal combustion were estimated to be 32%, 49%, and 19%, respectively to the total boron in Guiyang precipitations. The coal combustion and biomass (and/or organic matter) combustion showed different contributions of boron to the rainwaters in different seasons, the former in cold season while the latter in summer season had a more marked influence on the chemical and isotopic composition of the rainwater. The largest contribution of seawater-originated boron was observed for the heavy rain samples, which was up to 68%. This study indicates that the atmospheric environment of Guiyang city was strongly influenced by human activities, and boron isotopic composition is of great sensitivity to anthropogenic sources and can be a powerful technique to trace various sources of atmospheric emissions and even their origins.  相似文献   

10.
Submicron particles were collected from June to September 2008 in La Jolla, California to investigate the composition and sources of atmospheric aerosol in an anthropogenically-influenced coastal site. Factor analysis of aerosol mass spectrometry (AMS) and Fourier transform infrared (FTIR) spectroscopy measurements revealed that the two largest sources of submicron organic mass (OM) at the sampling site were (1) fossil fuel combustion associated with ship and diesel truck emissions near the ports of Los Angeles and Long Beach and (2) aged smoke from large wildfires burning in central and northern California. During non-fire periods, fossil fuel combustion contributed up to 95% of FTIR OM, correlated to sulfur, and consisted mostly of alkane (86%) and carboxylic acid groups (9%). During fire periods, biomass burning contributed up to 74% of FTIR OM, consisted mostly of alkane (48%), ketone (25%), and carboxylic acid groups (17%), and correlated to AMS-derived factors resembling brush fire smoke, wood smoldering and flaming particles, and biogenic secondary organic aerosol. The two AMS-derived biomass burning factors were identified as oxygenated and hydrocarbon biomass burning aerosol on the basis of spectral similarities to smoldering and flaming smoke particles, respectively. In addition, the ratio of oxygenated to hydrocarbon biomass burning OM shows a clear diurnal trend with an afternoon peak, consistent with photochemical oxidation. Back trajectory analysis indicates that 2–4-day old forest fire emissions include substantial ketone groups, which have both lower O/C and lower m/z 44/OM fraction than carboxylic acid groups. Air masses with more than 4-day old emissions have higher carboxylic acid/ketone group ratios, showing that atmospheric processing of these ketone-containing organic aerosol particles results in increased m/z 44 and O/C. These observations may provide functionally-specific evidence for the type of chemical processing that is responsible for biomass burning particle composition in the atmosphere.  相似文献   

11.
A total of 134 aerosol samples (dp < 2.5 μm) were collected at one rural site and one urban site in Texas from November 2005 to July 2006 to investigate the different sources that contribute to the ambient levels of different compounds. In particular, saccharide compounds were studied as potential tracers to track aerosols of biologically derived origin. The ambient concentration, seasonal variation, and urban/rural comparison of major saccharides and other organic compounds including normal alkanes, hopanes, and carboxylic acids were determined and analyzed relative to characterizing sources of PM2.5. Saccharides, together with other known molecular markers, were analyzed by a positive matrix factorization model and eight source factors were isolated that provide meaningful interpretation of aerosol sources. Three isolated factors were characterized by the dominance of different saccharide compounds and were attributed to wood smoke, sucrose rich bio-aerosols, and fungal spore derived bio-aerosols. It was estimated that wood smoke and primary biologically derived carbon sources contributed 22% and 14% to the measured ambient PM2.5 mass at San Augustine and 16% and 5% to the measured ambient PM2.5 mass at Dallas. The relative PM contribution from other resolved sources were also calculated.  相似文献   

12.
Seasonal trend of fog water chemical composition in the Po Valley   总被引:1,自引:0,他引:1  
Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.  相似文献   

13.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

14.
Samples of fine particulate organic matter were collected outside Durham, NC in the Duke Research Forest as part of the CELTIC study in July 2003. Particulate samples were collected on quartz filters using high volume air sampling equipment, and samples were analyzed for polar and non-polar organic species. Among compounds analyzed, oxidation products of α-pinene, namely pinic acid and pinonic acid, were identified in all samples. Pinic acid, being a dicarboxylic acid, has a low vapor pressure of the order of 10−8 Torr and is expected to contribute significantly to secondary organic aerosol (SOA) formation from the oxidation of α-pinene. Source contribution estimates from primary organic aerosol emissions were computed using the organic species as molecular markers with the chemical mass balance (CMB) model. The unapportioned organic carbon (OC) was determined as the difference between measured OC and OC apportioned to primary sources. This unapportioned OC was then correlated with pinic and pinonic acid to get a better understanding of the role of monoterpene oxidation products to form SOA. A reasonably good fit between pinic acid concentrations and unapportioned OC levels is indicative of the contribution of α-pinene oxidation products to SOA formation in ambient atmosphere. The results are significant considering the role of monoterpene emissions to global atmospheric chemistry.  相似文献   

15.
Carboxylic acids are ubiquitous and important components of the troposphere; they are currently measured in different environments. They are thought to have several sources comprising primary biogenic and anthropogenic emissions, hydrocarbons gas-phase oxidations, and some carbonyl compounds aqueous-phase oxidations. In the present review we make a synthesis of the concentrations of low molecular weight carboxylic acids in tropospheric aqueous and gaseous phases and in aerosol particles for different environments. We also successively examine the major sources of carboxylic acids and discuss their relative contribution to tropospheric concentrations for various environments as well as the principal sinks of these compounds.  相似文献   

16.
Abstract

In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003–2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute ~65–80% to measured OC, with wood smoke, on average, accounting for ~41% of OC and ~18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

17.
Abstract

Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children’s Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), ho-panes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

18.
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM10 filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6?%. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.  相似文献   

19.
Measurements of organic compounds in air and deposition have been carried out in parallel on the Swedish west coast. In this investigation the importance of long-range transport for the occurrence of organic compounds in deposition has been studied. Air samples were collected using a high volume sampler (HVS) and the deposition was sampled on a 1 m2 Teflon-coated horizontal surface with runoff for the precipitation to an adsorbent. The samples were analyzed in order to identify and quantify different semivolatile compounds such as PAH and petrogenic hydrocarbons and chlorinated compounds such as PCB, HCH and HCB. Qualitative differences between the content of organic compounds in air and deposition during periods with varying levels of air pollution and different meteorological conditions have been studied and a comparison with other air pollutants, such as soot, has been carried out. The results of the measurements show that deposition of PAH and other hydrocarbons takes place continuously but the greatest amounts are measured in the deposition in connection with episodes together with heavy precipitation. The highest concentrations of PCB and HCH in the air were obtained during a warm dry period in May and the greatest amounts were deposited in a period in May with heavy precipitation.  相似文献   

20.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight (C1C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3–0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号