首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 329 毫秒
1.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

2.
朔州市市区PM2.5中元素碳、有机碳的分布特征   总被引:3,自引:2,他引:1  
采集朔州市市区4个点位采暖季和非采暖季环境空气PM2.5样品,利用Elementar Analysensysteme Gmb H vario EL cube型元素分析仪测定其中元素碳(elemental carbon,EC)和有机碳(organic carbon,OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行分析.结果表明,朔州市市区非采暖季PM2.5中OC和EC的平均浓度为(14.3±2.7)μg·m-3和(10.3±3.1)μg·m-3,采暖季OC、EC平均浓度分别为(23.3±5.9)μg·m-3和(20.0±5.7)μg·m-3;4个点位OC和EC的浓度均表现为采暖季大于非采暖季,其中在采暖季,点位SW中OC和EC浓度分别为28.5μg·m-3和28.1μg·m-3,高于其它采样点,在非采暖季,点位PS中OC和EC的浓度分别为17.7μg·m-3和14.1μg·m-3高于其它采样点;采暖季和非采暖季PM2.5中OC/EC值均小于2,但OC和EC相关性不好(在采暖季和非采暖季的相关系数分别为0.66和0.52),说明PM2.5中碳气溶胶来源复杂.控制碳组分一次排放来源,如燃煤烟尘、生物质燃烧及机动车尾气排放,同时关注二次污染是控制朔州市PM2.5的关键.朔州市市区采暖季和非采暖季PM2.5中二次有机碳(secondary organic carbon,SOC)浓度分别为(6.44±2.77)μg·m-3和(4.11±1.92)μg·m-3.  相似文献   

3.
宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算   总被引:2,自引:0,他引:2  
为了研究PM2.5中碳质组分的时空分布特征,于2012年12月至2013年10月4个季度典型时段在宁波市5个采样点采集环境大气中的PM2.5,分析了样品中有机碳(OC)和元素碳(EC)的质量浓度,并估算二次有机碳(SOC)对OC的贡献.结果表明:1宁波市PM2.5年均质量浓度为51.6μg·m-3,其中OC和EC的比例分别为17%和6%.反向轨迹模型的分析结果表明,来自内陆地区的区域传输可能是冬季和春季PM2.5浓度较高的主要原因.2OC/EC比值和OC与EC的相关性分析结果表明,夏季有大量SOC生成,而冬季则可能受华北地区燃煤供暖的显著影响.3用EC示踪法对宁波市的SOC进行了估算,结果表明宁波冬季和春季受到区域传输的显著影响,污染源较不稳定,不宜使用该估算方法.夏季和秋季的SOC质量浓度分别为2.5μg·m-3和2.3μg·m-3,占OC的42%和28%.  相似文献   

4.
福建省三大城市冬季PM2.5中有机碳和元素碳的污染特征   总被引:15,自引:9,他引:6  
以福建省福州、厦门和泉州这3个主要城市为研究对象,采集了冬季PM2.5样品,采用热光透射法(thermal opticaltransmission,TOT)分析得到PM2.5、OC和EC的浓度水平和空间分布、OC与EC的相关性、OC/EC值以及二次有机碳分布特征.结果表明,福州、厦门和泉州冬季PM2.5的浓度范围为(79.94±18.08)~(114.78±26.10)μg.m-3,均超过《环境空气质量标准》(GB 3095-2012)规定的PM2.5日均值75μg.m-3.OC和EC的浓度范围(以C计)分别为(14.77±2.65)~(19.27±1.96)μg.m-3和(1.99±0.50)~(3.36±0.41)μg.m-3,分别是背景点福州平潭的1.2~1.6倍和1.2~2.0倍.福州平潭(R2=0.70)和晋安(R2=0.66)冬季PM2.5中OC与EC的相关性显著,说明OC和EC有相近的一次污染来源.OC/EC值为5.64~7.71,且值均大于2.0,说明各采样点存在二次有机碳(secondary organic carbon,SOC)的生成.SOC的浓度为2.47~7.17μg.m-3,占OC的比例为13.08%~45.67%,占PM2.5的2.20%~7.78%.  相似文献   

5.
南京北郊夏季大气颗粒物中有机碳和元素碳的污染特征   总被引:8,自引:4,他引:4  
段卿  安俊琳  王红磊  缪青 《环境科学》2014,35(7):2460-2467
采用DRI Model 2001A热/光碳分析仪对2013年5~7月期间南京北郊大气气溶胶9级惯性撞击式分级Andersen采样器膜采样样品中有机碳(OC)和元素碳(EC)的质量浓度进行了分析.结果表明,南京北郊夏季EC、OC的平均浓度,在PM2.1(空气动力学直径≤2.1μm)中分别为(2.6±1.1)μg·m-3、(13.0±5.2)μg·m-3,在PM9.0(空气动力学直径≤9.0μm)中,分别为(3.4±1.7)μg·m-3、(20.3±7.3)μg·m-3.EC主要富集在超细颗粒物中,OC主要存在于细颗粒物中,EC的PM1.1/PM9.0比值和OC的PM2.1/PM9.0比值分别为0.62和0.64.EC和OC浓度的平均最高值都出现在≤0.43μm粒径段中,分别占PM9.0中的总元素碳的33.4%和总有机碳的21.1%.南京北郊夏季PM1.1、PM2.1和PM9.0中EC、OC的相关性较好,说明存在共同的一次污染源.通过OC/EC特征物比值的方法得到南京夏季碳质颗粒物的主要来源有机动车尾气排放、燃煤排放和地面扬尘排放.  相似文献   

6.
忻州市环境空气PM10中有机碳和元素碳污染特征分析   总被引:4,自引:2,他引:2  
采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭示忻州市的碳组分污染特征.结果表明,忻州市PM10中OC和EC的平均质量浓度分别为(18.5±4.5)μg·m-3和(16.1±4.3)μg·m-3,采暖季和非采暖季TCA占PM10的比例分别为70.7%和43.8%;4个监测点位采暖季OC的质量浓度均高于非采暖季,XT、DC和KQ监测点采暖季EC的质量浓度高于非采暖季,SQ监测点则相反,采暖季燃煤是OC和EC的主要来源;监测点XT的OC质量浓度最高,为24.1μg·m-3,DC的EC质量浓度最高,为22.0μg·m-3,SQ的OC和EC质量浓度最低,分别为17.2μg·m-3和14.5μg·m-3,区域性污染特征存在差异;OC/EC均值小于2,一次污染严重;非采暖季OC与EC浓度相关性较好(R2=0.55),二者排放源单一,主要来源为机动车尾气排放,采暖季相关性不显著(R2=0.13),二者排放源复杂.忻州市主要通过控制燃煤、机动车尾气、生物质燃烧、工业源等的一次排放来减轻碳组分污染,进而提高环境空气质量.  相似文献   

7.
上海中心城区冬季PM_(2.5)中有机碳和元素碳组成变化特征   总被引:5,自引:0,他引:5  
采样分析了上海中心城区冬季2009年1月-2月PM2.5中有机碳和元素碳组分,并对其污染和变化特征进行了分析。监测分析结果表明,中心城区范围内OC、EC质量浓度空间分布无明显差异;OC、EC是PM2.5的重要组成部分,其在PM2.5中的质量分数分别为8.88%、1.49%;ρ(OC)/ρ(EC)比值较高,为5.73,且存在一定程度的二次有机污染;OC质量浓度和EC质量浓度有着很好的相关性,二者一定程度上有着相同的源;春节前后,TC浓度变化(即OC+EC)呈现明显的假日效应,机动车排放是TC的重要来源之一。  相似文献   

8.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

9.
无锡市冬季典型天气PM2.5中碳组分的污染特征   总被引:2,自引:1,他引:1  
于2013-12-03~2014-01-03在无锡市对大气细粒子(PM2.5)进行了连续采集,并用热/光透射法(TOT)分析了其中有机碳(OC)和元素碳(EC)的浓度,结合气象参数,分析了冬季霾产生过程及霾天气下碳组分的污染特征.结果表明,采样期间共有3次霾产生过程,冷空气、风和降水成为改善空气质量最有效的途径.PM2.5、OC及EC的日均质量浓度分别为(132.38±87.17)、(22.80±9.77)和(2.08±1.63)μg·m-3,总碳(TC,TC=OC+EC)占PM2.5的23.57%,同时TC与PM2.5之间存在较好的相关性,相关系数为(R2)0.730;采样期间,TC在PM2.5中所占的比例与PM2.5的浓度之间存在相反的变化趋势,并且在霾天气下TC所占的比例要比非霾天气小,二次无机气溶胶粒子(SO2-4、NO-3、NH+4)的快速增长可能是造成霾天气下细粒子浓度较高的原因之一;OC/EC值为12.83,并且相关性较差,可能与二次污染有关,对二次有机气溶胶(SOC)进行估算:得到SOC平均质量浓度为9.04μg·m-3,占OC的40.96%.  相似文献   

10.
上海市PM_(2.5)中含碳物质的特征和影响因素分析   总被引:27,自引:18,他引:9  
为了解上海市大气细颗粒物(PM2.5)中含碳物质的浓度及其影响因素,于2007年12月~2008年12月间在上海市的市区(徐家汇)和工业区(宝山)采样点分别采集了130多个PM2.5样品,应用DRI碳分析仪采用IMPROVE-TOR方法测定了样品中的有机碳(OC)、元素碳(EC)的含量.结果显示,OC和EC的季节平均浓度值冬季最高,夏季最低.上海市市区采样点PM2.5中OC和EC的年平均浓度为8.10μg.m-3和3.91μg.m-3,而工业区为11.91μg.m-3和4.69μg.m-3,高于市区;OC/EC比值在市区和工业区分别为2.01和2.42.OC和EC在4个季节都有较强的相关性(R2为0.52~0.87),其中冬季的相关性最高(R2为0.87,0.80),春季最低(R2为0.52,0.58),这与春季时上海的风向多变、污染物来源复杂有关.应用OC/EC比值法对二次有机碳(SOC)的含量进行了估算,SOC的年平均浓度在市区和工业区分别为2.72和5.07μg.m-3,占OC含量的30%左右,SOC对OC的贡献率夏季最高(约40%),这与夏季温度高、光照强烈有利于光化学反应进行的情况一致.降水对OC和EC的浓度有较明显的影响,冬季无降水天气的OC和EC平均浓度是雨雪天气时的2倍以上,而夏季有降水和无降水天气时OC和EC的浓度没有明显区别,这可能与夏季降水发生时大气稳定度较高有关.降水天气时OC/EC及SOC/OC比值明显降低.  相似文献   

11.
北京冬季PM2.5中元素碳、有机碳的污染特征   总被引:19,自引:2,他引:17  
通过2003年1月对北京市区PM2.5中元素碳(EC)、有机碳(OC)连续测量,分析了其污染特征。监测资料表明,北京市区PM2.5中ρ(OC)高于ρ(EC),它们多在夜间高、白天低,且变化趋势大致相同。北京市区冬季ρ(OC) ρ(EC)的值较低。   相似文献   

12.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气.  相似文献   

13.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

14.
为了获取机动车源尾气和主要民用燃料源燃烧过程排放的颗粒物中含碳气溶胶的排放特征,使用多功能便携式稀释通道采样器和Model 5L-NDIR型OC/EC分析仪,采集分析了典型机动车源(汽油车、轻柴油车、重柴油车)、民用煤(块煤和型煤)和生物质燃料(麦秆、木板、葡萄树树枝)的PM10和PM2.5样品中的有机碳(OC)和元素碳(EC).结果表明,不同排放源释放的PM10和PM2.5中含碳气溶胶的质量分数存在显著差异.总碳(TC)在不同源PM10和PM2.5中的质量分数范围分别为40.8%~68.5%和30.5%~70.9%,OC/EC范围分别为1.49~31.56和1.90~87.57.不同源产生的含碳气溶胶均以OC为主,OC在PM10和PM2.5中的质量分数范围分别为56.3%~97.0%和65.0%~98.7%.在PM10和PM2.5的含碳气溶胶中OC质量分数按照从高到低...  相似文献   

15.
唐山市大气颗粒物OC/EC浓度谱分布观测研究   总被引:3,自引:2,他引:1  
华北重工业城市唐山大气颗粒物污染严重,2009~2011年PM1.1、PM2.1、PM9.0及TSP年均值分别为(75±43)、(106±63)、(221±100)和(272±113)μg.m-3;碳质气溶胶在各粒径段均占较大比重,其中,元素碳(EC)在PM1.1、PM2.1、PM9.0及TSP各粒径段的年均比重分别约为9%、9%、6%和4%,有机碳(OC)年均比重分别为25%、24%、16%和14%.颗粒物浓度谱分布及碳质气溶胶富集量呈显著季节变化,秋冬季节细颗粒物中EC和OC浓度可高达(9±4)、(11±5)和(19±7)、(28±10)μg.m-3,分别占PM2.1的11%、10%和26%、25%;春夏季节EC和OC在粗细粒子中的富集量基本相当,分别为(5±2)、(5±1)和(15±3)、(15±1)μg.m-3,分别约占颗粒物总量的7%、6%和26%、18%.  相似文献   

16.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧.  相似文献   

17.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

18.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号