首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2013年6月在北京及华北平原大城市空气污染联合观测期间,使用大流量PM2.5采样仪分昼、夜采集北京市典型城区环境空气中PM2.5样品,利用GC-MS技术对PM2.5中正构烷烃的污染水平、分布特征与来源进行分析,并且结合后向轨迹分析了远距离传输的影响.结果表明:观测期间ρ(PM2.5)为29.73~275.30μgm3,PM2.5中ρ(总正构烷烃)为50.33~143.49 ngm3.PM2.5中正构烷烃质量浓度随碳数分布呈单峰-后峰型和双峰-后高型2种;Cmax(主峰碳数)为C29或C31;CPI(碳优势指数)为1.34~6.66;LMWHMW〔ρ(C14~C24正构烷烃)ρ(C25~C36正构烷烃)〕为0.10~0.31.观测期间PM2.5中正构烷烃主要来自高等植物蜡,并且主要来自温带植物;其次来自化石燃料和生物质的不完全燃烧.观测期间来自北京市南向气团轨迹出现概率最高,影响最为突出,其次为来自东南沿海方向和内蒙古中西部方向的气团轨迹.  相似文献   

2.
为研究南昌经开区冬季PM2.5中正构烷烃的污染特征及来源,文章对2020年12月1日-2021年2月28日采集的PM2.5样品进行了正构烷烃浓度分析。结果表明:南昌经开区冬季PM2.5样品中正构烷烃碳数范围为C20~C33,浓度为71.66~1 295.30 ng/m3,平均为(327.51±186.07) ng/m3。气象参数和气态污染物与正构烷烃之间的相关性表明,正构烷烃浓度受到了人为排放源和气象条件的共同影响。利用诊断参数和PMF模型对正构烷烃来源进行估算,结果显示冬季人为源(化石燃料和生物质燃烧)对南昌经开区大气中正构烷烃的贡献达到66%~77%。南昌经开区冬季出现的8次污染事件,主要受到了生物质燃烧源和化石燃料燃烧源输入的控制,整个冬季污染事件期间,这2种人为源的贡献比例达到68.05%,其中生物质燃料燃烧源占比31.79%,化石燃烧占比36.26%。气象条件也对污染事件中的正构烷烃累积起到了作用,随着温度的升高,更多的挥发性有机物被分配到颗粒物中,会促进正构烷烃浓度...  相似文献   

3.
为研究聊城市冬季大气PM2.5中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM2.5样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源。结果表明,聊城市冬季PM2.5中总正构烷烃的质量浓度为(456.9±252.5)ng?m-3,其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0.9倍和1.2倍。采样期间碳优势指数(CPI)值为1.2±0.1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3.1%~36.0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源。聊城市冬季PM2.5中糖类化合物的总质量浓度为(415.5±213.8)ng?m-3,其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91.6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献。主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧。  相似文献   

4.
为研究聊城市冬季大气PM_(2.5)中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM_(2.5)样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源.结果表明,聊城市冬季PM_(2.5)中总正构烷烃的质量浓度为(456. 9±252. 5) ng·m~(-3),其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0. 9倍和1. 2倍.采样期间碳优势指数(CPI)值为1. 2±0. 1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3. 1%~36. 0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源.聊城市冬季PM_(2.5)中糖类化合物的总质量浓度为(415. 5±213. 8) ng·m~(-3),其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91. 6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献.主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧.  相似文献   

5.
利用气相色谱-质谱技术分析了秋季鄂尔多斯市居民区、工业区和清洁区5个采样点大气PM2,、PM10颗粒物中正构烷烃组分,运用Cmax、CPl、Cn(wax)分子地球化学参数对污染源进行了初步示踪研究,并对污染程度进行了判断.结果表明,鄂尔多斯市秋季大气PM2.5、PM10颗粒物上正构烷烃来源相对比较复杂,各功能区均不同程度的受到人为来源正构烷烃污染的影响.总体来说,工业区和居民区人为来源正构烷烃污染较重,这两个功能区污染状况基本相当,而清洁区受人为来源正构烷烃污染相对较小.在鄂尔多斯地区,气候因素尤其是风向因素对大气颗粒物上正构烷烃污染水平的影响比较大.通过与我国其它大中型城市进行对比发现,我国大部分城市市区大气PM2.5、PM10颗粒物中正构烷烃主要来自于人为污染排放.  相似文献   

6.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大.  相似文献   

7.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:2,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

8.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

9.
南京大气PM2.5中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

10.
太原市空气颗粒物中正构烷烃分布特征及来源解析   总被引:6,自引:3,他引:3  
为明确城市空气颗粒物中正构烷烃分布特征及污染来源,采集采暖和非采暖季环境空气PM10样品和典型排放源(高等植物、燃煤和机动车)样品,利用GC-MS测定正构烷烃,选取诊断参数并结合污染源排放特征讨论PM10中正构烷烃分布和来源,采用主成分分析法定量解析源贡献率.结果表明,环境空气PM10中正构烷烃含量呈较强时空变化,采暖和非采暖季浓度分别为213.74~573.32 ng·m-3和22.69~150.82 ng·m-3,前者总浓度最高是后者的18倍;采暖季郊区点位(JY、JCP、XD和SL)浓度均高于市区,以JY最高(577.32 ng·m-3),非采暖季工业区(JS)总烷烃量(150.82 ng·m-3)明显高于其它点位,是SL总量的7倍.采暖季化石燃料来源烷烃(C n≤C24)与总烷烃量相关性优于植物来源烷烃(C n≥C25),非采暖季相反,表明前者化石燃料输入较后者高.CPI和%WNA指示非采暖季植物贡献率较采暖季高,且植物蜡烷烃随环境压力的增大总产率增加;C max和OEP表明非采暖季PM10中有机质成熟度低于采暖季;两季样品TIC图均存在UCM鼓包,机动车尾气是该城市的重要污染源.PCA解析结果表明太原市环境空气PM10中正构烷烃首要排放源为机动车尾气和高等植物,约占51.28%;其次为煤烟尘,贡献率为43.14%.煤烟尘污染控制协同机动车尾气净化措施的完善将成为降低城市空气颗粒物中正构烷烃浓度的有效途径.  相似文献   

11.
城市空气质量数值预报系统对PM2.5的数值模拟研究   总被引:9,自引:2,他引:9  
发展了南京大学城市空气质量数值预报模式系统(NJU-CAQPS),在模式系统中引入了气溶胶模块.运用该系统对南京地区冬夏两季PM2.5浓度的时间变化规律和空间分布特征进行了数值模拟研究,通过与实际观测资料对比,检验发展后的模式系统对于细颗粒物的模拟性能.结果表明,南京市城近郊内冬夏两季PM2.5浓度具有明显的时空变化特征,一般在半夜和清晨会出现较高浓度,午后至傍晚浓度较低.冬季浓度高于夏季,冬夏两季算例的浓度日均值之比为1.51.空间分布受到排放源位置、地面流场等因素影响.二次气溶胶在PM2.5中占相当的份额,冬夏两季算例中二次气溶胶在PM2.5中所占比例分别为12%和15%,夏季二次气溶胶对PM2.5浓度贡献较冬季大.与实际观测资料的对比验证表明,经过发展的该模式系统对于城市PM2.5等颗粒物的模拟性能良好.  相似文献   

12.
利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.  相似文献   

13.
广州亚运期间鹤山大气颗粒物及碳组分的分析   总被引:1,自引:0,他引:1  
2010年11月广州亚运会期间,在鹤山连续测量了PM10、PM2.5及PM2.5中有机碳(OC)、元素碳(EC)的质量浓度,结合气象数据综合分析了该地区上述各种污染物的污染特征。研究结果表明:鹤山大气颗粒物以PM2.5为主,PM10和PM2.5具有较好的相关性(R2=0.72),其中PM2.5污染较严重;与国内外其他城市相比,鹤山OC、EC质量浓度处于中等偏高水平;OC和EC质量浓度的相关性较差(相关系数R2=0.32),OC/EC质量浓度比值远大于2,说明鹤山大气OC、EC来源较复杂,同时存在严重的二次污染;估算的二次有机碳(SOC)占OC总质量的66.5%。各种气象因素中,风速对污染物的质量浓度影响最大,秸秆燃烧等人类活动对其也有显著影响。  相似文献   

14.
大气颗粒物对A549和HUVECs细胞的毒性作用   总被引:2,自引:0,他引:2  
范兰兰  尚羽  张玲 《环境科学研究》2012,25(10):1166-1172
比较了A549和HUVECs 2种细胞对颗粒物的敏感度,以探讨大气颗粒物粒径对生物活性的影响. 采集北京市区PM10~2.5、PM2.5~0.1和PM0.1,将A549和HUVECs细胞暴露于不同浓度的颗粒物悬浮液24 h后,用噻唑蓝(MTT)法测定细胞存活率,并用LDH试剂盒测定细胞培养液中LDH(乳酸脱氢酶)的含量. 结果表明:随着染毒剂量的增大,细胞存活率逐渐降低,并且呈剂量-反应关系;培养液中LDH浓度呈剂量依赖型增加;当染毒剂量>200 μg/mL时,PM0.1的细胞致死率大于PM10~2.5和PM2.5~0.1(P<0.01);同一粒径的颗粒物对HUVECs的毒性比A549略大,但无统计意义. 因此,相对于粗颗粒物,细、超细颗粒物具有较大的细胞毒性,A549和HUVECs细胞对颗粒物的敏感度差异不显著.   相似文献   

15.
青岛沿海地区大气气溶胶浓度与主要无机化学组成   总被引:27,自引:7,他引:20  
王珉  胡敏 《环境科学》2001,22(1):6-9
从 1997-09~1998-11期间 ,5次监测大气气溶胶 ,获得了青岛沿海地区气溶胶 (TSP、PM10 、PM2.5)的质量浓度 .气溶胶中直径 <2.5μm的细粒子质量浓度约占TSP总浓度的 50% ;<10μm的粒子的质量浓度则占TSP总浓度的 75% .对气溶胶中主要可溶性离子组分的分析表明 :TSP中可溶性离子的质量浓度占总质量浓度的40%以上 .其中主要可溶性离子为SO2-4、NO-3 、NH+4 .这 3个离子的质量浓度约占可溶性离子总浓度的 70% ,而且主要存在于细粒子中 ,表明其主要来自二次气溶胶 .冬季气溶胶浓度大大高于其它季节 .  相似文献   

16.
上海地区光化学污染中气溶胶特征研究   总被引:7,自引:0,他引:7  
利用上海地区2011~2013年9个大气成分及气象观测站点臭氧(O3)、颗粒物(PM1、PM2.5、PM10)、气溶胶粒子谱观测资料以及气象数据,分析了上海不同功能区臭氧超标时的频率分布及各类污染物浓度特征.结果表明,上海地区夏季光化学污染严重,周边城区臭氧污染要明显高于中心城区,不同功能区污染情况差异较大,金山化工区和崇明生态岛光化学污染较为严重.通过分析光化学污染前后气溶胶变化特征可知,当出现光化学污染时,各站气溶胶浓度明显升高,特别是PM1浓度增加显著,且PM1/PM2.5比未出现臭氧污染时的比例明显升高.表明随着光化学反应的增强,二次气溶胶生成明显增多.因此可将PM1作为光化学污染的判定指标之一.  相似文献   

17.
对气溶胶测量仪器进行准确标定是保证大气环境及污染源颗粒物测量数据质量的重要前提.本研究搭建了一套多分散在线标定气溶胶测量仪器的系统,该系统采用超声气溶胶发生装置产生多分散颗粒物,并用空气动力学粒径谱仪对颗粒物粒径分布进行测量.评测结果表明该系统干燥腔室内气溶胶稳定、均匀,且符合对数正态分布.以采样器为例,已有研究多使用单分散离线标定方法对采样器切割性能进行标定,该方法操作繁琐、实验周期长.利用多分散在线标定系统对PM_(2.5)和PM_(10)双级虚拟撞击采样器进行标定,并与单分散离线标定方法进行了对比,两套系统的标定结果呈现较好的一致性,但多分散在线方法大大缩短了标定实验周期.  相似文献   

18.
Introduction Soil dust derived from the w ind erosion process in arid and sem i-arid region is an im portant factor on the clim ate forcing(Tegen etal., 1996; Sokolik and Toon, 1996). D esert regions in East A sia w ere considered as the m ajor sources fo…  相似文献   

19.
北京市冬季室内空气PM10微观形貌及粒度分布   总被引:9,自引:0,他引:9       下载免费PDF全文
探讨了北京市吸烟和非吸烟4户家庭室内外空气可吸入颗粒物(PM10)的质量浓度变化规律,利用高分辨场发射扫描电镜(FESEM)和图像分析技术研究了室内PM10的微观形貌特征及粒径分布特点.结果表明,吸烟室内PM10浓度一般高于非吸烟室内;室内PM10一般由烟尘集合体、燃煤飞灰、矿物颗粒、生物质颗粒及未知颗粒共5种颗粒物组成.吸烟和非吸烟室内PM10的粒径一般小于2.5祄,呈双峰分布,其中在吸烟室内,烟尘集合体和未知颗粒等的贡献比较大,而非吸烟室内PM10的数量-粒度分布也为双峰分布,烟尘集合体、燃煤飞灰的贡献比较大.吸烟和非吸烟室内PM10的体积-粒度分布均为单峰分布,并且集中在2.5~10祄范围,其中吸烟室内的烟尘集合体、矿物颗粒物占优势,而非吸烟的室内矿物颗粒占优势.虽然矿物颗粒对粒度粒径的贡献较小,但对体积的贡献比较大.  相似文献   

20.
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96mg/m3.PM2.1中主要离子质量浓度排列依次为SO42->NO3->NH4+>Ca2+. SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1mm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8mm粒径段内;Na+和Cl-峰值出现在0.43~1.1mm和3.3~5.8mm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在<2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号