首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在实验条件下,将健康的性成熟雄性黑斑蛙暴露于0.1、0.2、0.4、0.8和1.6mg·L-1的Pb2+溶液中30d,以Ca2+-ATP酶、Na+-K+-ATP酶、Ca2+-Mg2+-ATP酶、β-葡萄糖醛酸苷酶(β-DG)、乳酸脱氢酶(LDH)和酸性磷酸酶(ACP)活性为指标,进行了长期铅暴露对雄性黑斑蛙生殖毒性的研究.结果表明:随着铅染毒剂量的增加,Ca2+-ATP酶和Na+-K+-ATP酶活性被诱导,Ca2+-Mg2+-ATP酶活性被抑制,当Ca2+-Mg2+-ATP酶的抑制程度超过Ca2+-ATP酶和Na+-K+-ATP酶的代偿机制时,会抑制精子的发生,进而导致雄性生殖毒性;在1.6mg·L-1Pb2+处理下,ACP酶被显著抑制,提示支持细胞受损,精子总数受到影响;在0.4mg·L-1Pb2+处理下,LDH酶被显著抑制,提示生精细胞受损,精子质量受到影响.  相似文献   

2.
通过改变溶液温度、pH值、ATP浓度、钙浓度和培养液的钙浓度等条件,研究了菹草根和叶细胞质膜Ca2+-ATPase的活性的变化.结果表明,根细胞质膜Ca2+-ATPase的活性在pH 6.0时最高,其最适反应温度为40℃;叶细胞质膜Ca2+-ATPase在一个较宽的pH范围内具有高活性,最适反应温度为45℃;溶液中ATP浓度分别为3mmol/L和4mmol/L时菹草根和叶细胞质膜Ca2+-ATPase活性最大;无论是菹草根还是叶细胞质膜Ca2+-ATPase活性,在溶液钙浓度为10-4mol/L时都最高.在营养液中添加不同CaCl2浓度培养菹草,其根和叶细胞质膜Ca2+-ATPase活性表现出差异,根细胞质膜Ca2+-ATPase活性比叶细胞质膜Ca2+-ATPase活性高,且随营养液中钙浓度的增加,这种差异加大;当营养液中钙浓度在10mg/L(2.5×10-4 mol/L)以下时,Ca2+-ATPase活性逐渐上升,营养液中钙浓度由10mg/L增加到15mg/L,Ca2+-ATPase活性陡然下降,这与溶液钙浓度对Ca2+-ATPase活性的影响相呼应.  相似文献   

3.
二氧化硫对大鼠离体心脏功能影响的机制研究   总被引:2,自引:1,他引:1  
为了探讨二氧化硫(SO2)对心脏功能影响的机制,分别用10、300和1000μmol·L-1的SO2灌流大鼠离体心脏后,测定心脏组织中一氧化氮(NO)、超氧化物歧化酶(SOD)、丙二醛(MDA)和谷胱甘肽(GSH)含量以及心脏灌流液中肌酸激酶(CK)和乳酸脱氢酶(LDH)活性.结果表明,10、300和1000μmol·L-1的SO2均可使心脏组织中NO和MDA含量以及心脏灌流液中CK和LDH活性明显增加,而使SOD和GSH含量明显减少.较高浓度(300和1000μmol·L-1)的SO2可使心脏组织中Na+K+-ATP酶和Ca2+Mg2+-ATP酶活性明显下降.结论:SO2对大鼠离体心脏功能影响的作用机制与SO2对心脏组织的氧化损伤作用、心肌细胞膜Na+K+-ATP酶和Ca2+Mg2+-ATP酶活性降低及NO-cGMP信号转导通路有关.  相似文献   

4.
俞晟  邹鹏  肖琳  杨柳燕 《中国环境科学》2009,29(12):1306-1311
在水/土比10、180r/min振荡和室温28℃条件下,研究Fe3+、Cu2+、Zn2+、Ca2+对高岭土上蒽分布的影响.结果表明,高岭土对Fe3+、Cu2+、Zn2+、Ca2+的吸附平衡时间和平衡浓度分别为24h和(20 ± 3)mg/g.当金属离子负荷330mg/g时,上清液中高岭土胶体最低浓度为(40 ± 3)mg/L.添加Fe3+时,总胶体浓度从52mg/L增加到133mg/L;添加Cu2+或Zn2+时,总胶体浓度从52mg/L增加到110mg/L;添加Ca2+时,总胶体浓度从52mg/L增加到73mg/L.上清液中蒽浓度增加趋势与上清液中总胶体浓度的变化趋势一致,添加Fe3+时,蒽浓度从30ng/L增加到73ng/L;添加Cu2+或Zn2+时,蒽浓度从28,35ng/L增加到65,66ng/L;添加Ca2+时,蒽浓度从40ng/L增加到50ng/L.上清液中蒽浓度的增加趋势与所添加的金属电荷密度高低顺序一致(Fe3+ > Cu2+、Zn2+).在pH值为6.5时,Ca2+对增加上清液中蒽浓度能力最弱.  相似文献   

5.
以河南华溪蟹(Sinopptamon henanense)为研究材料,采用生理生化和酶学组织化学等方法,通过不同时间(12、24、48、72和96 h)不同镉浓度(0、14.5、29、58 mg·L-1)处理,首先研究了镉对肝胰腺细胞内钙调素(CaM)含量、钙ATP酶(Ca2+-ATPase)活性和细胞凋亡的影响;然后用Ca2+抑制剂EGTA和LaCl3预处理河南华溪蟹后再进行镉处理,以分析Ca2+信号对镉诱导肝胰腺细胞凋亡的影响.结果显示,镉处理引起肝胰腺细胞CaM含量和Ca2+-ATPase活性显著升高,并且Caspase-3和Caspase-9被激活.用Ca2+抑制剂EGTA和LaCl3预处理华溪蟹4 h后,再用镉处理48 h,镉诱导的肝胰腺细胞Caspase-3和Caspase-9活性上升都被阻断.结果表明:镉处理引起河南华溪蟹肝胰腺细胞Ca2+浓度发生变化,并通过CaM等信号分子调控Caspase-3/9活性,进而引发细胞凋亡.  相似文献   

6.
钙对盐胁迫下芨芨草萌发与生长的缓解效应   总被引:2,自引:0,他引:2  
通过用外加不同浓度CaCl2-NaCl的混合溶液对芨芨草进行培养,对萌发和生长的多项指标进行了测定,结果表明NaCl胁迫时抑制了芨芨草的萌发和生长,在相同NaCl浓度下,萌发率、根长和茎长随外加钙浓度的增加而增长,在盐胁迫下,芨芨草体内Ca2 离子减少,Na 离子增加,在同-NaCl浓度下,外加钙增加了 Na ,Ca2 的含量,研究说明外加Ca2 能通过提高植物对盐胁迫的适应而增加Na 、Ca2 的含量,表明外源钙离子在NaCl胁迫下芨芨草种子的萌发和幼苗生长具有缓解效应.  相似文献   

7.
以溶胶-凝胶法制备纯的和分别掺杂Fe3+、Ce3+的TiO2纳米粒子,以橙黄IV的光催化氧化评价纳米粒子的紫外光与可见光活性,利用TG-DSC、XRD、BET及UV-Vis吸收光谱考察掺杂对TiO2的相变、粒径、比表面积及光吸收性能的影响,在归一化条件下探讨Fe3+及Ce3+掺杂对TiO2活性和表面性质产生影响的机制。结果表明:Fe3+及Ce3+的最佳掺杂量分别为0.2%和0.04%;Ce3+抑制TiO2由锐钛矿向金红石转变以及改善TiO2高温组织稳定性的能力均明显大于Fe3+;Fe3+和Ce3+掺杂均能提高TiO2的紫外光活性并扩展TiO2的光响应范围,但光生电子与空穴复合以及光腐蚀使它们对TiO2可见光活性的提高并不显著。Fe3+和Ce3+的半径及其相应氧化物的性质决定了两者对TiO2性能的不同影响。  相似文献   

8.
本文从赣南稀土矿区分离获得一株耐钇(Y)的根际植物促生细菌Z2,初步鉴定为芽孢杆菌属细菌,摇瓶发酵条件下能够有效减少Y3+生物有效性,其作用机理可能是菌体吸附、pH值升高以及活性代谢产物与Y3+结合的共同作用.水稻砂培过程中添加Z2菌能够显著减少水稻根部Y的积累:0.08mmol/L处理条件下减少49%(P<0.05),0.35mmol/L处理条件下减少43%(P<0.01).植物螯合肽响应水稻根部积累的稀土钇,金属硫蛋白和谷胱甘肽转硫酶无明显变化.研究结果表明Z2菌可作为潜在的菌种资源,在细菌修复稀土污染农田和保障水稻安全生产中应用.  相似文献   

9.
纳米氧化锌具有广泛的工业用途,其生态安全性受到广泛关注,针对纳米氧化锌诱导的呼吸道细胞毒性及其作用机理研究尚不广泛.本研究分别采用不同浓度和粒径(30 nm和90 nm)的氧化锌颗粒物处理大鼠气管上皮细胞(rat tracheal epithelial cells,RTE cells),暴露时间为12 h,通过检测细胞内锌元素含量,细胞增殖抑制率,细胞凋亡率,凋亡相关caspsae 3基因与蛋白相对表达量,细胞内金属硫蛋白活性,ROS和MDA含量、细胞内Ca~(2+)-ATP酶和Na~+/K~+-ATP酶活性来分析纳米氧化锌诱导细胞毒效应机理.在90 nm纳米氧化锌高浓度暴露时,其细胞内锌元素浓度为0.845μg·L~(-1),约为低浓度暴露组的4.7倍,是30 nm低浓度暴露组的9倍;纳米颗粒物诱导的细胞增殖和凋亡毒效应具有剂量和尺寸依赖效应;30 nm处理组的pro-caspase 3和cleaved-caspase 3蛋白表达量均高于90 nm暴露组;暴露浓度为10 mg·L~(-1)的90 nm处理组的金属硫蛋白增加量为0.533μg·L~(-1),增幅达到46%;不同粒径氧化锌颗粒物处理后,细胞内ROS和MDA含量显著上升,且30 nm处理组结果均高于90 nm处理组;纳米氧化锌颗粒物暴露诱导细胞Ca~(2+)-ATP酶和Na~+/K~+-ATP酶活性显著下降,30 nm氧化锌颗粒物暴露组,其Na~+/K~+-ATP酶活性分别是对照组的1.8倍和3.5倍.纳米氧化锌颗粒物进入RTE细胞,通过干扰锌在细胞内代谢,诱导细胞内ROS和MDA水平升高,产生氧化应激,进而诱导细胞凋亡是导致纳米氧化锌产生细胞毒性的主要原因之一.纳米氧化锌会导致细胞内Ca~(2+)-ATPase和Na~+/K~+-ATPase活性下降,离子通道失调,破坏细胞内离子平衡,进一步造成细胞凋亡.  相似文献   

10.
采用批式实验,以葡萄糖和乙酸钠为基质,研究投加不同浓度稀土Ce3+对稳定驯化和长期贮存的厌氧颗粒污泥消化产VFA的影响.结果表明,Ce3+浓度<1 mg/L时可降低消化过程中的VFA浓度,促进丁酸向乙酸的转化以及乙酸转化为甲烷;Ce3+浓度为1~10 mg/L时则抑制细菌活性,不利于乙酸和丁酸的降解.稀土Ce的投加对以葡萄糖为基质的厌氧颗粒污泥消化产VFA中各组分的质量分数影响较小,厌氧消化前期和中期VFA产物主要为丁酸和乙酸,两者含量之和约为96%,丙酸含量<3%.以乙酸钠为唯一基质厌氧消化时,0.05 mg/L Ce3+的投加对乙酸钠降解具有一定促进作用,可提高反应速率和去除率.污泥经过长期贮存活性降低,但含稀土Ce的厌氧颗粒污泥活性高于不含稀土的污泥,利用含稀土Ce的污泥有利于反应器再启动.  相似文献   

11.
人工湿地植物处理含重金属生活废水的实验研究   总被引:11,自引:1,他引:10  
通过耐受浓度试验得出凤眼莲、水蕹、水花生和荇菜四种植物对含重金属生活污水中Cd2+的耐受范围值分别<5mg/L、0.5mg/L、0.2mg/L、0.2mg/L;凤眼莲和水花生对Zn2+的耐受范围值分别<10mg/L,水蕹和荇菜对Zn2+耐受范围值为<5mg/L和0.5mg/L。由植物对生活污水中锌\镉离子去除率试验可知,在Cd2+/Zn2+浓度分别为0.5mg/L和5mg/L时,与对照组相比,两种植物均能明显去除污水中的Zn2+与Cd2+,其中Cd2+去除率提高了65.3%,Zn2+去除率提高了43.7%。研究发现植物处理在前5d内为去除Zn2+/Cd2+的高效区间,这一时期内植物对Zn2+/Cd2+去除率的贡献可以达到40%~60%,表明在植物的耐受浓度范围内,湿地植物对生活污水中的Cd2+/Zn2+有较好的去除效果,根部为主要的富集器官。  相似文献   

12.
水葫芦重金属吸附性能再利用研究   总被引:1,自引:1,他引:0  
文章将从河道中打捞的水葫芦分别进行干燥、颗粒化及纤维提取处理,然后研究其对Cu2+的吸附特性,并进一步研究了颗粒状水葫芦在不同浓度Cu2+溶液和不同pH值条件下的Cu2+吸附特性。结果发现水葫芦经过颗粒化和纤维提取处理后,其最大Cu2+吸附量基本保持不变,但吸附速率稍有提高。水葫芦颗粒袋对Cu2+溶液的吸附性能基本不受溶液pH值的影响,对痕量Cu2+溶液具有较好的吸附效果,基本达到国家污水综合排放标准规定的Cu2+含量的三级标准,是一种可以推广的再利用水葫芦重金属离子吸附性能的实用方法。  相似文献   

13.
二(2-乙基己基)磷酸(DEHPA)一直成功的作为一种含有氯仿膜的大块液膜载体有效的传输Ce~(4+)。文章采用有氯仿膜的大块液膜方法进行Ce~(4+)的传输研究,结果表明:pH为2左右的料液中含有纯净的Ce~(4+)或者Ce~(4+)与一些阳离子二者的混合物,这些阳离子包括Ca~(2+),Mg~(2+),Na~+,K~+,Pb~(2+),Fe~(3+),Cu~(2+),以及UO~(2+)等,而0.1mol/L的盐酸为传输池中分散相的反萃取剂。大于99%的Ce~(4+)会在2h以内有选择的渗入液膜以内,而在相同时间内其他阳离子的传输量将少于3%。料液相中存在的Fe~(3+)和UO~(2+)的存在对铈离子的传输有极大的影响。Fe~(3+)可以有效地利用加入到料液中的硫氰化钾或柠檬酸加以掩蔽,但是UO~(2+)的共传输却只能利用加入到料液相中的碳酸盐或硫氰酸盐来加以减少。  相似文献   

14.
采用水热合成法制备稀土元素Ce3+掺杂Bi2WO6光催剂,通过X射线衍射、场发射电镜扫描、紫外-可见漫反射光谱、N2物理吸附-脱附等手段对合成材料的结构、形貌、光吸收等物理化学性能进行表征,并以染料废水中罗丹明B的降解考察其光催化活性.结果表明,Ce3+掺杂量为0.05%时,其结晶度好、颗粒较均匀、具有较强的可见光吸收性能,且比表面积比纯Bi2WO6提高近10%以上,对罗丹明B的去除效果最好;催化剂用量越高、罗丹明B的初始浓度越低、反应溶液pH值越低、H2O2的浓度越高越有利于Ce/Bi2WO6对罗丹明B的吸附和降解;而阴阳离子的影响各不相同:NO3-、SO42-没有太大的影响; Na+、K+、Ca2+、Mg2+、Cl-的加入均促使的染料的去除;HCO3-抑制了罗丹明B的吸附,但是却促进了光降解.另外,经重复使用3次,光催化降解速率常数并没有降低,表明稀土Ce3+改性Bi2WO6是一种有效稳定的光催化剂.  相似文献   

15.
胡学伟  李姝  荣烨  李媛 《中国环境科学》2014,34(7):1749-1753
采用自行设计的反应器,通过调节培养液的配比对载体进行挂膜,得到蛋白质和多糖含量比分别为7:1、5:1和10:1的3种生物膜作为吸附剂,用其对Cu2+进行吸附试验,同时对吸附机理进行探讨.结果表明,培养8d后,生物膜可挂膜成熟,在C/N=12时,生物膜上的菌落数较C/N=4和C/N=37条件下多.PN/PS值越小,生物膜对铜的吸附量越高,EPS3对Cu2+的吸附量分别高出EPS1 7.37 %, EPS2 7.62%.在生物膜吸附Cu2+后,溶液中Ca2+、Mg2+、K+含量明显升高,表明离子交换对生物膜吸附Cu2+起主要作用,且Cu2+更易与Ca2+和Mg2+产生离子交换作用.当KNO3浓度在0.1~0.6mol/L之间,随着离子强度的增加,生物膜吸附Cu2+的量迅速减少,当KNO3浓度大于0.6mol/L时,生物膜对Cu2+吸附量的变化趋于平缓,说明生物膜对Cu2+的吸附同时包括离子交换吸附和化学吸附.  相似文献   

16.
间歇培养条件下研究了单一稀土元素镧(La3 )和铈(Ce3 )在不同浓度水平下对厌氧颗粒污泥活性及其动力学行为的影响.结果表明,La3 和Ce3 对厌氧颗粒污泥比产甲烷活性有促进作用的浓度范围均为0.01~0.1 mg·L-1,促进作用浓度峰值均为0.05mg·L-1,最大促进百分比分别为10.35%和20.79%;La3 和Ce3 对SMA(比甲烷活性)的半抑制浓度分别为5mg·L-1和1000mg·L-1,La3 较易对污泥产生抑制作用.米-门方程可以用来描述厌氧消化过程中甲烷发酵阶段的动力学行为,稀土元素La3 和Ce3 投加至反应系统后,提高了甲烷发酵过程的动力学常数Vmax和半饱和常数Ks.  相似文献   

17.
北京大气PM10中水溶性金属盐的在线观测与浓度特征研究   总被引:3,自引:1,他引:2  
研究了北京大气可吸入气溶胶(PM10)中水溶性金属盐的变化特征,并对其来源进行了分析。钠盐、钾盐、镁盐、钙盐浓度的变化范围分别为:0.5~1.4μg/m3、0.5~2.5μg/m3、0.1~0.5μg/m3、0.6~5.8μg/m3,不同水溶性金属盐最高值和最低值出现季节不同。水溶性金属盐没有明显的采暖期和非采暖期的差异,说明冬季采暖不是它们的主要来源。海盐和土壤源是北京大气PM10中Na+的主要来源,K+的主要来源包括秸秆燃烧和生物质排放,土壤源是Mg2+和Ca2+的重要来源。水溶性金属盐的日变化规律不同。降水对Na+、K+、Mg2+、Ca2+的清除分别为10%~70%、20%~80%、10%~77%、5%~80%。  相似文献   

18.
于2017年11月采集武汉高校大气降尘样品106个,采用离子色谱仪分析样品中9种水溶性离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的含量,用相关性分析和比值分析法解析其污染特征,用PCA-MLR模型初步探讨其来源及贡献率。结果表明:武汉高校降尘中主要水溶性离子为Ca2+、SO42-、NO3-,平均浓度顺序为Ca2+>SO42->NO3->K+>Na+>Cl->Mg2+>NH4+>F-,且F-、Cl-、NO3-、SO42-、Na+、K+、Mg2+、Ca2+分布存在明显的空间质异性。m(NO3-)/m(SO42-)为0.28,以固定源污染为主;降尘样品总体呈碱性。9种可溶性离子主要以NaCl、KCl、MgCl2、Mg(NO32、MgSO4、Ca(NO32、CaSO4等形式存在,主要来源于土壤/交通混合源、燃烧源、工业源,三者贡献率分别为8%、12%、80%。  相似文献   

19.
丽江市夏季降水化学组成分析   总被引:9,自引:2,他引:7  
运用相关分析、趋势分析、海盐示踪法和HYSPLIT模型,对2006-05-23~2006-07-02云南丽江市夏季降水常量离子的化学特征分析表明,降水中离子浓度的大小顺序为SO2-4>Ca2+>Cl->NO-3>Na+>K+>Mg2+,其中SO2-4和Ca2+是夏季降水中的高浓度离子,分别占离子总浓度的65.5%和15.6%;13次降水中阴离子总浓度显著高于阳离子总浓度.夏季降水中SO2-4∶NO-3变化范围为7.2~37.1, 平均值为15.7, 表明SO2-4为该区降水酸度的主要贡献者.由于离子在大气中的相互反应和来源的相似性,离子间相关性水平较好,其中SO2-4和NO-3的相关系数为0.74;离子浓度与同期降水和平均风速表现负相关.研究区夏季降水中NO-3、 SO2-4、 K+、Ca2+主要是陆源物质输入,NO-3、 SO2-4、 K+、Ca2+、Mg2+和Cl-陆源物质贡献比例依次为100%、 98.8%、 96%、 99.3%、 46.7%和50.3%.人类经济活动导致的一些污染是该区大气环境变化的主要原因;丽江周边工业区的污染物质主要通过局地环流输入,南亚、东南亚和我国东南沿海工业区的污染物质主要随季风环流输入.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号