首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
贺博文  聂赛赛  王帅  冯亚平  姚波  崔建升 《环境科学》2021,42(11):5152-5161
为研究承德市PM2.5中碳质组分的季节变化及污染来源,于2019年1、4、7和10月采集大气PM2.5样品,测定碳质组分浓度.通过有机碳(OC)与元素碳(EC)比值、总碳质气溶胶(TCA)及二次有机碳(SOC)的估算,分析碳质组分的变化特征;结合后向轨迹和主成分分析(PCA)方法,分析污染来源.结果表明,采样期间PM2.5、OC和EC的平均质量浓度分别为(31.26±21.39)、(13.27±8.68)和(2.80±1.95)μg ·m-3.PM2.5的季节变化趋势为:冬季[(47.68±30.37)μg ·m-3]>秋季[(28.72±17.12)μg ·m-3]>春季[(26.59±15.32)μg ·m-3]>夏季[(23.17±8.38)μg ·m-3],与总碳(TC)、OC和EC季节变化趋势一致,冬季(R2=0.85)的OC与EC来源较一致;OC/EC值得出4个季节均受到交通和燃煤源排放的影响,且冬季受烟煤排放影响显著.TCA的平均浓度为(21.38±13.68)μg ·m-3,占PM2.5比例达68.39%,二次转化率(SOC/OC)为:春季(54.09%)>秋季(37.64%)>夏季(32.91%)>冬季(25.43%).后向轨迹模拟结果表明,春季和夏季气团携带的污染物浓度相对较低,秋季污染物的传输通道为西南方向,冬季为西北方向,主成分分析(PCA)表明,承德市PM2.5削减的关键是控制机动车尾气、燃煤和生物质燃烧源的排放.  相似文献   

2.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   

3.
碳质气溶胶作为大气气溶胶的重要组成部分,对大气环境质量、人类健康及全球气候变化有着重要的影响.为探究贵阳市花溪城区大气细颗粒物(PM2.5)中碳质气溶胶的变化特征及来源,于2020年不同季节开展大气PM2.5原位观测研究,利用热/光学碳分析仪(DRI Model 2015)测定大气PM2.5的碳质组分.结果表明,观测期间大气ρ(PM2.5)、ρ[总碳质气溶胶(TCA)]、ρ[有机碳(OC)]、ρ[二次有机碳(SOC)]和ρ[元素碳(EC)]的平均值分别为:(39.7±22.3)、(14.1±7.2)、(7.6±3.9)、(4.4±2.6)和(2.0±1.0)μg·m-3,OC/EC的平均值为(3.9±0.8).ρ(PM2.5)、ρ(TCA)、ρ(OC)、ρ(SOC)和ρ(EC)呈现冬季最高[(52.6±28.6)、(17.0±9.6)、(9.1±5.2)、(6.1±3.9)和(2.4±1.2)μg·m-3],夏季最低[(25.1±7.1)、(11.6±3.6)、(6.3±1.9)、(3.7±1.2)和(1.6±0.6)μg·m-3]的季节变化特征.OC/EC季节变化呈现:夏季(4.2±0.8)>冬季(3.8±0.9)>秋季(3.8±0.5)>春季(3.7±0.9),表明花溪城区各季节均存在SOC生成.SOC与OC呈现显著相关(R2=0.9),且随着大气氧化性增强,SOC浓度呈增加趋势.OC与EC各季节均呈现较好相关性,其中秋季最高(R2=0.9),其他3个季节偏低(R2为0.74~0.75),表明二者具有共同来源.通过OC/EC值范围初步判断碳质气溶胶来源于机动车尾气排放、燃煤排放和生物质燃烧排放.为了进一步定量解析主要排放源对碳质气溶胶的贡献,利用PMF模型对碳质气溶胶来源解析,结果表明贵阳市花溪城区碳质气溶胶主要来源为燃煤源(29.3%)、机动车排放源(21.5%)和生物质燃烧源(49.2%).  相似文献   

4.
利用热光分析法探究了西安市2017年353个PM2.5样品中的元素碳(EC)、有机碳(OC)、甲醇可萃取有机碳(MSOC)以及热-光分析法得到的7个碳组分(OC1~4、EC1~3)的质量浓度、季节变化趋势以及来源.结果表明,西安市2017年OC、EC以及MSOC的平均质量浓度分别为(17.56±11.83)、(4.08±2.95)和(11.10±6.77)μg·m-3.OC质量浓度的季节性趋势为冬季 > 春季 > 夏季 > 秋季;EC为冬季 > 春季≈秋季 > 夏季.MSOC/OC比值年平均值为0.64±0.20,冬季最高,夏季最低.春季OC和EC相关性较好(r2=0.76),而在冬季的相关性较差(r2=0.43),说明碳气溶胶的来源不同.采用EC示踪法对二次气溶胶的含量进行估算,SOC的平均含量分别占到了春、夏、秋、冬四季OC质量浓度的51.9%、38.4%、37.3%、44.0%.采用主成分分析法得出西安市的碳质气溶胶主要来源于燃煤和机动车排放.  相似文献   

5.
为研究伊犁河谷PM2.5中碳组分特征及来源,于2021年7月19—29日在其核心区伊宁市及周边3个县(伊宁县、察布查尔县和霍城县) 设置6个监测点位采集PM2.5样品.采用热光法测定了样品中有机碳(OC)和元素碳(EC)的质量浓度,深入分析了夏季伊犁河谷核心区PM2.5中OC和EC的浓度特征,并用最小比值法定量估算了二次有机碳(SOC)的浓度.此外,综合使用8种碳组分丰度及正矩阵因子分解模型定量解析出PM2.5中碳质气溶胶的来源.结果表明:夏季采样期间该区域PM2.5、OC、EC的平均浓度分别为(21.9±2.0)、(5.0±0.6)、(0.6±0.1) μg?m-3,且 呈现出伊宁市碳组分浓度高于周边3县的规律.OC、EC浓度显著相关,反映出二者有较高的同源性.整个区域SOC的平均浓度为(2.1±0.9) μg?m-3,在PM2.5中的占比为9.4%,在OC中的占比为40.1%,反映出OC主要来自一次排放,但二次生成也有较大贡献;碳组分浓度相对较低的霍城县和伊宁县SOC/OC反而高于碳组分浓度较高的伊宁市和察布查尔县,说明这两个县二次转化程度较高.源解析结果表明,采样期间伊犁河谷核心区PM2.5中碳组分主要来源于机动车尾气源、道路扬尘和生物质燃烧与燃煤混合源,其贡献率分别为48.8%、34.0%和17.2%.  相似文献   

6.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:12,自引:7,他引:5  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21 (冬季)和2007-04-01~2007-04-30 (春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、 62.4和7.5 μg/m3,夜晚的平均浓度分别为448.7、 66.1和6.9 μg/m3,对应春季白天的平均浓度分别为397.9、 26.7和6.9 μg/m3,夜晚分别为362.1、 31.9和8.6 μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2 μg/m3,远高于春季(2.8和3.4 μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   

7.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%).  相似文献   

8.
嘉善冬季碳质气溶胶变化特征及其来源解析   总被引:3,自引:3,他引:0  
利用2018年冬季(2018年12月至2019年2月)和2019年冬季(2019年12月至2020年2月)嘉兴市嘉善县善西超级站有机碳(OC)、元素碳(EC)及细颗粒物(PM2.5)浓度数据分析嘉兴嘉善地区碳质气溶胶变化特征及潜在来源区域.结果表明,2018年和2019年冬季OC浓度分别为6.90μg·m-3和5.63μg·m-3,EC浓度分别为2.47μg·m-3和1.57μg·m-3,2019年冬季OC和EC浓度较2018年冬季降幅分别为18.4%和36.4%.利用Minimum R-squared (MRS)方法计算得到2018年和2019年冬季二次有机碳(SOC)分别为1.49μg·m-3和1.97μg·m-3,一次有机碳(POC)浓度分别为5.41μg·m-3和3.66μg·m-3,SOC在OC中占比呈上升趋势,上升31.1个百分点,POC占比变化则相反.值得注意的是,随着PM2.5浓度升高,OC和EC浓度呈上升趋势,最高上升幅度分别为474.7%和408.2%,但在PM2.5中占比却呈下降趋势,OC和EC占比下降幅度分别为6.5个百分点和2.4个百分点;POC对PM2.5的贡献波动不大,仅在150μg·m-3以上有明显降低趋势,SOC对PM2.5的贡献先下降后上升.嘉兴OC和EC潜在源区主要为苏南地区、安徽东南部和浙江北部,且2019年冬季和2018年冬季相比,OC和EC的主要潜在源区贡献浓度分别下降2μg·m-3和6μg·m-3以上,且潜在源区高值区域变小.疫情前受机动车尾气排放和燃煤共同影响,春节和居家隔离期间,因交通管制等原因,机动车排放量减少,燃煤贡献占比上升.  相似文献   

9.
为了研究中原城市群区域城市秋冬季大气PM2.5的污染特征和其主要成分的潜在来源,于2018年10月到2019年1月在郑州、洛阳、安阳和新乡这4个典型城市展开秋冬季连续4个月PM2.5膜样本采集,采用X射线荧光光谱法,碳分析法和离子色谱法分别对18种无机元素,有机碳(OC)/元素碳(EC),和9种水溶性无机离子进行了测定.根据PM2.5日均值浓度水平分为3个污染等级,并分别通过对氮氧化率(NOR)和二次有机碳(SOC)及富集因子的计算结果对PM2.5主要成分NO3-和SOC及18种无机元素的时空变化进行了对比分析.通过化学质量平衡(CMB)模型计算了4个城市的排放源及贡献率,并通过后向轨迹(HYSPLIT)模型和潜在源贡献因子法(PSCF)分析了4个城市PM2.5和主要成分NO3-及OC的潜在污染来源.结果表明,采样期间郑州、洛阳、安阳和新乡PM2.5均值分别为(82.1±45.5)、(84.7±39.8)、(96.8±46.1)和(81.1±36.6)μg·m-3,日均值的最高浓度值分别是国家二级标准的3.3、2.6、3.0和2.3倍;4个城市PM2.5的主要组分都为NO3-和SOC,NO3-的浓度,NO3-/EC和NOR都随着污染等级的升高而显著升高,NO3-/EC和NOR的均值随着污染等级的升高总体上表现出郑州和洛阳略高于安阳和新乡;SOC的浓度和在OC中的占比及SOC/EC的比值都随着污染等级的升高而增大;从无机元素的浓度和富集程度来看,As在郑州最高,Mn和Fe在洛阳最高,Zn、Ni和Cr在安阳最高以及Cu和Pb在新乡最高;4个城市PM2.5污染源为二次硝酸盐、二次硫酸盐、有机物、燃煤源、机动车源、扬尘源、生物质源和工艺过程源,二次硝酸盐的分担率在郑州(37.7%)最高,新乡(14.1%)机动车分担率最高,洛阳(7.0%)和安阳(6.8%)的工业过程源的分担率相对较高;郑州、洛阳、安阳和新乡分别有51.6%、49.2%、49.6%和46.3%的气流来自西北方向;郑州潜在污染区域主要集中在河南省,洛阳主要在河南省南部和汾渭平原,安阳和新乡则是主要在河南省和京津冀传输带上,另外安徽西北部、山东西南部、山西东南部和陕西北部也对安阳和新乡OC的污染造成了影响.  相似文献   

10.
近年来,国务院颁布的《大气污染防治行动计划》和《打赢蓝天保卫战三年行动计划》对我国空气质量的全面改善起到了重要作用,然而,当前鲜有对四川盆地两大政策实施效果进行评估以及对政策实施后PM2.5化学组分新特征的针对性研究.2017年和2020年分别是两大污染减排政策实施效果评估的关键时期,为对两时期成都市大气PM2.5及其中碳质组分特征进行全面了解,分别于2016年10月至2017年7月和2020年12月在成都市区进行了PM2.5的连续采样,并对其中有机碳(OC)和元素碳(EC)进行了分析.结果表明:①2016~2017年成都市ρ(PM2.5)平均值为(114.0±76.4)μg·m-3,最高值出现在冬季,可达(193.3±98.5)μg·m-3,是浓度最低季节春季[(73.8±32.3)μg·m-3]的2.6倍,而这种严重的冬季污染在2020年出现了明显改善,对应的ρ(PM2.5)为(96.0±39.3)μg·m-3,降幅达50.3%.②2016~2017年ρ(OC)和ρ(EC)的平均值分别为(21.1±16.4)μg·m-3和(1.9±1.3)μg·m-3,分别占PM2.5的质量分数为18.5%和1.7%;ρ(OC)季节变化特征为:冬季[(40.6±21.5)μg·m-3]>秋季[(17.0±7.0)μg·m-3]>夏季[(14.4±3.9)μg·m-3]>春季[(12.6±6.0)μg·m-3],而各季节ρ(EC)水平接近(1.3~2.4 μg·m-3);二次有机碳(SOC)是OC的重要组成,可占OC的质量分数为44.5%.相比2016年冬季,2020年冬季ρ(OC)降至(19.2±9.1)μg·m-3,降幅达52.7%,EC则升高了26.1%.③随污染加重,各碳质组分及其贡献变化趋势各异,相比2016年冬季,2020年冬季OC随污染加重贡献更加趋于稳定,而SOC占比升高更为明显,二次有机组分贡献不容忽视.④各季节气团来向和污染物潜在源区均呈现出了明显差异;与2016年冬季相比,虽然2020年冬季主要气团来向未发生明显变化,但各轨迹对应的污染物浓度均出现了大幅降低,且污染物潜在源区向东部区域扩展明显.  相似文献   

11.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

12.
宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算   总被引:2,自引:0,他引:2  
为了研究PM2.5中碳质组分的时空分布特征,于2012年12月至2013年10月4个季度典型时段在宁波市5个采样点采集环境大气中的PM2.5,分析了样品中有机碳(OC)和元素碳(EC)的质量浓度,并估算二次有机碳(SOC)对OC的贡献.结果表明:1宁波市PM2.5年均质量浓度为51.6μg·m-3,其中OC和EC的比例分别为17%和6%.反向轨迹模型的分析结果表明,来自内陆地区的区域传输可能是冬季和春季PM2.5浓度较高的主要原因.2OC/EC比值和OC与EC的相关性分析结果表明,夏季有大量SOC生成,而冬季则可能受华北地区燃煤供暖的显著影响.3用EC示踪法对宁波市的SOC进行了估算,结果表明宁波冬季和春季受到区域传输的显著影响,污染源较不稳定,不宜使用该估算方法.夏季和秋季的SOC质量浓度分别为2.5μg·m-3和2.3μg·m-3,占OC的42%和28%.  相似文献   

13.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

14.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.  相似文献   

15.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

16.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

17.
鞍山市道路扬尘碳组分特征及来源解析   总被引:4,自引:4,他引:0  
林孜  姬亚芹  林宇  国纪良  马妍  赵静琦 《环境科学》2020,41(9):3918-3923
为研究鞍山市道路扬尘PM_(2.5)中碳组分污染特征及来源,于2014年10月采集鞍山市9条道路的扬尘样品,通过再悬浮得到PM_(2.5)滤膜样品,利用热光碳分析仪测定PM_(2.5)中OC(有机碳)和EC(元素碳)并分析其特征.结果表明,道路扬尘PM_(2.5)中ω(TC)为9.78%(外环路)~14.00%(千山西路),ω(OC)为8.15%(外环路)~10.84%(千山西路),ω(EC)为1.63%(外环路)~2.85%(千山西路),ω(OC)明显高于ω(EC),说明各道路扬尘中含有较多的有机碳;采样期间OC/EC的值均大于2,说明道路扬尘中均可能存在二次污染;通过Spearman相关分析及线性拟合可知,鞍山市道路扬尘PM_(2.5)中OC和EC来源大致相同;聚类分析表明,鞍山市道路扬尘PM_(2.5)中碳组分主要来源于机动车尾气排放、生物质燃烧和煤炭燃烧.  相似文献   

18.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧.  相似文献   

19.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

20.
为了研究清洁取暖措施对保定市PM2.5中碳质气溶胶浓度和来源的影响,于2014年和2019年冬季采暖期在保定市采集PM2.5样品,用DRI Model 2001A热光碳分析仪测定样品中OC和EC的浓度.结果表明,2014年采暖期PM2.5中ρ(OC)和ρ(EC)平均值分别为60.92μg·m-3和18.15μg·m-3,2019年采暖期PM2.5中ρ(OC)和ρ(EC)平均值分别为36.63μg·m-3和6.07μg·m-3,与2014年相比2019年OC、 EC浓度分别下降了39.87%和66.56%,EC下降幅度大于OC,且2019年气象条件与2014年相比更不利于污染物扩散.通过对OC和EC相关性分析和SOC估算,发现2014年和2019年保定市OC和EC相关性R2分别为0.874和0.811,表明保定市OC和EC具有较为一致的来源.2014年和2019年ρ(SOC)的平均值分别为16...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号