首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
川南自贡市大气颗粒物污染特征及传输路径与潜在源分析   总被引:5,自引:5,他引:0  
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱.  相似文献   

2.
基于NCEP/NCAR全球再分析气象资料和2015-2017年PM_(2.5)浓度,利用HYSPLIT模型研究不同气流轨迹对广州PM_(2.5)浓度的影响,以及污染输送路径和潜在源区空间分布特征。结果表明:(1)广州2015-2017年PM_(2.5)平均浓度为36.5μg/m~3,逐月平均PM_(2.5)浓度1月份最高,为49.3μg/m~3,轻度污染及以上时次比例达15.66%,6月份最低,为20.8μg/m~3,无轻度及以上污染时次。(2)PM_(2.5)平均浓度在不同情景类型下的浓度高低顺序依次为:污染日干季清洁日湿季,其中污染日的PM_(2.5)平均浓度是清洁日的近3倍,干季的PM_(2.5)平均浓度是湿季的1.4倍;不同情景类型下的PM_(2.5)浓度日变化特征基本都在白天时段低(16时最低),晚上时段高(21-22时最高),日变化幅度为污染日干季清洁日湿季。(3)在干季,影响广州的气流轨迹路径主要有5类:东北路径、东南路径、西北路径、西南路径及偏西路径,其中第2类东南路径对广州PM_(2.5)平均浓度的贡献最高;而在湿季,影响广州的气流轨迹路径主要有4类:偏南路径、东南路径、偏北路径及西南路径,其中第3类偏北路径对广州PM_(2.5)浓度的贡献最高。(4)基于潜在源贡献因子和浓度权重轨迹分析法分析表明,广州PM_(2.5)浓度潜在源贡献较大的区域主要集中在广州东部的东莞、惠州、深圳、肇庆、中山等周边地区,该研究可为确定广州污染潜在源贡献区以及区域联防联控提供参考。  相似文献   

3.
对北京2015年11月26日~12月2日出现的PM_(2.5)严重污染过程进行研究,分析了此次事件的污染特征和气象条件,结合HYSPLIT模型,用聚类方法对研究期间抵达北京的地面(500m)和高空(3000m)逐时72h气流后向轨迹聚类,并分析了地面和高空方向上气流轨迹对北京PM_(2.5)浓度的影响.运用潜在源贡献因子分析法和浓度权重轨迹分析法分别模拟了此次PM_(2.5)的主要潜在源区.结果表明,研究期间,北京PM_(2.5)小时均浓度数值变化较大.低温,高湿度和微风为北京PM_(2.5)严重污染过程的出现创造了适宜条件.不同方向气流轨迹对北京PM_(2.5)的影响在空间上存在显著差异.西北方向气流是影响北京PM_(2.5)浓度的主要气流轨迹,而地面来自南部的气流对北京PM_(2.5)浓度的影响也不能忽视.对北京PM_(2.5)的WPSCF和WCWT分析表明,蒙古国中西部、新疆东部、内蒙古中西部、山西北部、河北和山东北部对北京PM_(2.5)质量浓度贡献分别在0.7,200μg/m3以上,表明这些地区是影响此次北京PM_(2.5)的重要潜在源区.  相似文献   

4.
对2017年南京市区7个自动空气质量监测点的PM_(2.5)质量浓度ρ(PM_(2.5))数据进行分析,采用克里金(Kringing)空间插值法、气流运动轨迹聚类、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)探讨了四季大气中ρ(PM_(2.5))的时空分布特征和潜在来源。结果显示,四季大气中ρ(PM_(2.5))均值由高到低依次为冬季(65. 54μg/m~3)、春季(41. 70μg/m~3)、秋季(35. 18μg/m~3)和夏季(23. 56μg/m~3),秦淮区四季大气中ρ(PM_(2.5))均最高。春季南京大气中ρ(PM_(2.5))易受黄海海岸和北方大陆性输送气流的影响,来自黄海方向的气流轨迹2贡献比例达51. 65%,对应的ρ(PM_(2.5))为50. 91μg/m~3;夏季南京大气中ρ(PM_(2.5))主要受江苏、东部海洋和南部沿海城市输送气流的影响,其中源自江苏的气流轨迹1对南京大气PM_(2.5)贡献比例最大(33. 64%),气流轨迹对应的ρ(PM_(2.5))为35μg/m~3;秋季南京大气中ρ(PM_(2.5))易受短距离的偏北气流影响,来自山西南部,河南中部、安徽中部的气流轨迹5对应的ρ(PM_(2.5))最高,出现概率(21. 11%)和贡献比例(27. 81%)均较高;冬季南京大气中ρ(PM_(2.5))主要受北方大陆性输送气流影响,来自俄罗斯、蒙古国东部、河北北部、北京、天津、山东中部的长距离气流轨迹4对应的ρ(PM_(2.5))最高,达109. 8μg/m~3,其贡献比例为26. 86%。PSCF和CWT分析发现,安徽、山东、浙江与江苏交界和黄海海岸是影响南京市空气质量的主要潜在源区,此外,湖北、北京、天津以及渤海海岸也是南京大气PM_(2.5)的潜在源区。  相似文献   

5.
镇江市四季PM2.5污染特征与潜在源区分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用2017年3月1日—2018年2月28日镇江市环境监测站提供的逐时数据,对镇江市PM_(2. 5)污染特征进行分析,并结合HYSPLIT-后向轨迹模型,综合运用轨迹聚类及PSCF、CWT分析方法,计算了不同季节影响镇江城区PM_(2. 5)的主要气流输送路径及镇江市PM_(2. 5)的主要潜在源区。结果表明:镇江市PM_(2. 5)浓度季节分布特征明显,冬季PM_(2. 5)浓度最高,夏季最低。四季PM_(2. 5)浓度日变化均呈两峰一谷型分布,且夜间普遍高于白天,周末高于工作日。四季PM_(2. 5)浓度与NO_2、CO相关系数较高,表明工业排放与交通源可能是镇江市PM_(2. 5)的主要来源。镇江地区气流输送存在显著的季节变化特征:春季西北偏西及东北方向气流轨迹占主要优势;夏季气流主要来自东北、东南及西南方向;秋季以东北及偏东气流为主;冬季西北气流轨迹占绝对优势。镇江四季PM_(2. 5)浓度受本地及周边城市的局地污染输送影响较大,主要潜在源区集中分布在江苏本地及其周边的山东、安徽、浙江、上海等地。春、夏、秋季这些地区对镇江PM_(2. 5)浓度贡献值基本为35~75μg/m~3;冬季该贡献值较大,均在75μg/m~3以上,最高值可达到150μg/m~3以上;同时,冬季受北方污染输送影响,河北、京津冀等地也是主要潜在源区,贡献值为35~75μg/m~3。  相似文献   

6.
北京春季一次霾-沙天气污染特性与成因分析   总被引:3,自引:3,他引:0  
2017年5月3~5日,北京发生一次特别的重污染过程,与之相配的气象条件较为特殊,对污染形态和成因展开研究.基于北京35个环境监测站和与之最近的35个自动气象站,获取本次污染过程的总体特征及PM_(10)、PM_(2.5)浓度与地面风场的匹配形态;利用MODIS和CALIPSO研究污染空间分布、输送路径、污染物类别;根据欧洲中期天气预报中心ECMWF第三代再分析资料ERA-Interim及风廓线雷达数据研究污染成因.以期以地-空立体监测技术手段配合气象条件得到本次污染特有的形态特征和影响因素.结果表明,利用以上多源数据,对本次污染进行立体观测和综合分析,能较好地反映污染特性和受制因素.本次污染骤然开始,陡然下降,持续约30h,整个过程PM_(10)和PM_(2.5)浓度高,分别可达600~1 000μg·m~(-3)和200~700μg·m~(-3).全过程分为三段,前半段、间歇期、后半段.前、后半段污染成因以及由此造成的PM_(10)和PM_(2.5)浓度在空间分布上各有特点.前半段主导风向为西北风,风速小,PM_(10)浓度空间差异小,在800μg·m~(-3)以上,而PM_(2.5)浓度空间差异大,南部和城区高,达600~700μg·m~(-3),其余地方低,在350~500μg·m~(-3).间歇期低层风向从西北风切变为南风,高层维持西北风,南部和城区PM_(10)浓度下降明显,到650μg·m~(-3),北部依然在800μg·m~(-3),而此时北部PM_(2.5)浓度甚至降到200μg·m~(-3).后半段主导风又回到了西北风,且风速激增,此时PM_(2.5)浓度空间差异小且同一站点的浓度均小于前半段,在250~500μg·m~(-3).而PM_(10)浓度又回到了800μg·m~(-3)的水平.说明本次过程属典型霾-沙混合型污染.在偏西气流的影响下,对北京污染的主要贡献是沙尘型的PM_(10),而在偏南气流下,对北京污染的贡献除了沙尘外,还有PM_(2.5).污染重的同时,风速也大,大气垂直运动交汇于大约2~3 km高度,在此高度层内有大量污染物累积.  相似文献   

7.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析   总被引:1,自引:0,他引:1  
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.  相似文献   

8.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM_(2.5)浓度均未超过200μg/m~3;除夕夜,廊坊站点PM_(2.5)峰值浓度达到504μg/m~3,是清洁天气的26倍;年初二~初五,各站点PM_(2.5)始终高于120μg/m~3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m~3?s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM_(2.5)峰值浓度可达无燃放时PM_(2.5)峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   

9.
北京野鸭湖湿地观测站大气颗粒物变化特征   总被引:1,自引:0,他引:1  
利用北京延庆野鸭湖湿地生态气象观测站2013年PM_(2.5)和PM_(10)连续观测资料,统计分析野鸭湖地区大气颗粒物的变化特征及气象影响因素。研究结果表明:野鸭湖观测站PM_(2.5)和PM_(10)年平均浓度分别为45.7μg/m3和80.2μg/m~3,超标率分别为17.8%和11.4%,以《环境空气质量标准》二级标准统计。PM_(2.5)和PM_(10)均在1月达到峰值,7月出现最低值。各季PM_(2.5)/PM_(10)值在37.8%~69.9%之间,春季以PM_(10)污染为主,冬季以PM_(2.5)为主。各季节PM_(2.5)和PM_(10)日变化中夏季出峰最早,冬季最晚,冬春季PM_(2.5)浓度为双峰型,夏秋季为单峰型;PM_(10)的日变化仅春季与PM_(2.5)略有不同,晚上峰值强度远大于早上。野鸭湖地区颗粒物污染受本地源和外来源的共同影响,东北气流易造成颗粒物积累,而西南气流有利于颗粒物稀释扩散。典型污染过程显示,持续的东北风控制、风速2.0 m/s左右、平均相对湿度在80.0%左右利于颗粒物浓度的增加;而偏西气流和较高温度、较低湿度能共同起到缓解污染的作用。  相似文献   

10.
成都冬季PM2.5化学组分污染特征及来源解析   总被引:1,自引:0,他引:1  
2017年1月1~20日在成都地区分昼夜对PM_(2.5)进行连续膜样品采集,并在实验室测定了其主要化学组分(水溶性离子和碳质组分)的质量浓度.观测期间,PM_(2.5)的平均质量浓度为(127.1±59.9)μg·m~(-3);总水溶性离子的质量浓度为(56.5±25.7)μg·m~(-3),其中SO2-4、NO-3和NH+4是最主要的离子,质量浓度分别为(13.6±5.5)、(21.4±12.0)和(13.3±5.7)μg·m~(-3),一共占到了水溶性离子的85.6%;有机碳(OC)和元素碳(EC)的平均质量浓度分别为34.0μg·m~(-3)和6.1μg·m~(-3),分别占PM_(2.5)质量浓度的26.8%和4.8%.昼夜污染对比显示,PM_(2.5)白天和夜晚质量浓度分别为(120.4±56.4)μg·m~(-3)和(133.8±64.0)μg·m~(-3),夜间污染更为严重.SO2-4、NO-3和NH+4白天浓度高于夜间,这与白天光照促进了二次离子的形成有关;而Cl-、K+、OC和EC浓度夜间明显升高,可能是受夜间煤和生物质燃烧排放增加的影响.通过对近年来成都冬季PM_(2.5)化学组分的研究进行文献总结和比较后发现,SO2-4浓度显著降低,从2010年的50.6μg·m~(-3)降低到2017年的13.6μg·m~(-3);而NO-3浓度变化不大,维持在20μg·m~(-3)左右.PM_(2.5)中离子酸碱平衡分析表明,成都冬季PM_(2.5)由于NH+4的相对过剩而呈现出碱性,与以往呈偏酸性结果存在差异.对成都冬季NO-3/SO2-4的比值进行计算,NO-3/SO2-4平均值为1.57,表明移动源对PM_(2.5)污染影响更大.OC与EC的相关性表明,白天和夜间OC与EC的相关系数分别为0.82和0.90(P0.01),OC与EC来源具有一致性.SOC估算结果显示,白天和夜间SOC浓度分别为8.5μg·m~(-3)和11.9μg·m~(-3),占到OC的28.1%和31.8%.K+/EC平均值为0.31,并且K+与OC之间相关系数为0.87(P0.01),说明生物质燃烧对成都冬季碳质气溶胶有一定影响.主成分分析表明,成都冬季PM_(2.5)主要来源于燃烧源(燃煤、生物质燃烧等)、二次无机污染源以及土壤和扬尘源,其贡献率分别为32.8%、34.5%和21.5%.  相似文献   

11.
上海典型持续性PM2.5重度污染的数值模拟   总被引:6,自引:1,他引:5  
本研究针对2013年1月23~24日的上海PM_(2.5)持续重污染过程,采用WRF-Chem大气化学模式以及PM_(2.5)质量浓度、能见度、气象要素等地面实测资料相结合的方式,揭示了造成上海冬季PM_(2.5)持续性重污染的一类"天气学必要成因",即一次弱冷空气活动过程导致了两种不利污染天气条件——"弱气压场(静稳形势)"和"弱冷空气扩散(输送形势)",两者先后影响上海造成PM_(2.5)浓度持续上升.主要过程如下:首先弱冷空气影响之前,上海处在不利的局地气象扩散条件下,受弱气压场控制10 h后本地PM_(2.5)质量浓度达到重度污染水平,之后夜间稳定边界层(地面静风和低层逆温)使得PM_(2.5)重度污染维持了7h,期间PM_(2.5)平均质量浓度为172.4μg·m~(-3).后期弱冷空气影响上海,虽然改善了局地扩散条件但是同时产生了明显的周边污染物输送,使得本地PM_(2.5)质量浓度升高并达到峰值(280μg·m~(-3)),继续加重污染水平,期间PM_(2.5)平均质量浓度为213.6μg·m~(-3).WRF-Chem模拟结果进一步表明,整个污染过程周边区域输送对上海PM_(2.5)平均贡献率为23%,其中两个阶段周边区域输送的平均贡献率分别为17.2%和32.2%,可见在不同的污染天气条件下周边污染源的贡献存在显著差异,因此可以根据对污染天气类型的预判制定应急减排方案.  相似文献   

12.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

13.
北方秋冬季为重污染过程频发季节,为了解聊城市冬季重污染过程中PM_(2.5)及化学组分污染特征,于2016年1月7~11日在聊城市区开展PM_(2.5)样品采集并分析了其中水溶性离子、碳成分及无机金属元素这3种化学组分,并对污染特征及成因进行了分析.结果表明,此次污染过程PM_(2.5)浓度呈现明显的倒V字型,平均浓度为238.3μg·m~(-3),超过国家环境空气质量标准(GB 3095-2012)二级浓度限值2.2倍;NH_4~+、NO_3~-和SO_4~(2-)为PM_(2.5)的主要水溶性离子成分;随污染加重或减轻,NH_4~+、SO_4~(2-)、NO_3~-、Cl-和Mg~(2+)浓度呈现增加或降低趋势,而Ca~(2+)变化趋势与之相反.污染鼎盛时,NH_4~+、NO_3~-和SO_4~(2-)浓度分别为48.96、68.45和80.55μg·m~(-3),达到起始阶段的6.29、7.31和7.84倍;过程期间OC和EC的浓度为20.8~60.2μg·m~(-3)和3.0~7.5μg·m~(-3),OC浓度高于EC且变化幅度明显偏大;过程期间各日无机金属元素浓度和分别为10.2、22.4、16.0、19.6和8.2μg·m~(-3),富集因子(EF)结果显示,各元素EF均小于10,未被富集,表明污染过程中其主要来源于地壳等自然源;PM_(2.5)质量浓度重构结果表明,有机物(OM)、SO_4~(2-)和NO_3~-为PM_(2.5)的主要组分,其次为NH_4~+、地壳物质和其他离子,EC和微量元素含量相对较低.随着PM_(2.5)污染加重,二次无机盐(SO_4~(2-)、NO_3~-及NH_4~+)浓度及所占比例均随之增加,OM浓度随之增加但比例有所下降,而地壳物质浓度及比例均下降,表明二次无机转化是此次污染过程的主要原因,主要受燃煤和机动车排放影响.  相似文献   

14.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

15.
利用中国环境监测总站的PM_(2.5)(Particulate Matter with aerodynamic≤2.5μm)数据、ERA-interim再分析资料等,结合混合单粒子拉格朗日综合轨迹模型(HYSPLIT4),重点分析了华北地区PM_(2.5)的时空分布特征及该地区PM_(2.5)重污染对我国东北、长三角地区空气质量的影响。结果表明,华北地区是中国PM_(2.5)的高值区,2015、2016和2017年华北地区年平均PM_(2.5)质量浓度分别为62.1、59.5和56.8μg/m~3,呈减小趋势。该地区冬季PM_(2.5)污染最严重,部分区域的平均浓度甚至超过110μg/m~3。个例研究表明,来自华北的污染物可在大约48 h后输送至东北和长三角地区,分别占当地污染物总量的21%和71%;同时,在冬季弱高压系统和地形的共同影响下,华北地区42%的污染物不易扩散而局限在本地,15%的污染物向长三角方向输送,不易向东北方向输送。  相似文献   

16.
文章在北京城市森林植被区选择2个观测点,采集2个观测点的PM_(2.5)质量浓度数据,并结合北京植物园的气象数据,研究其PM_(2.5)质量浓度变化特征和影响因素,探讨PM_(2.5)质量浓度变化对城市生活的影响。结果表明:被选观测点的PM_(2.5)浓度月变化基本呈"M"型,PM_(2.5)浓度在6月最低(西山公园为(71.01±34.34)μg/m~3,北京植物园为(44.41±31.57)μg/m~3),2月最高(西山公园为(154.07±95.70)μg/m~3,北京植物园为(139.49±100.74)μg/m~3),10月达下半年的最高值(西山公园为(133.45±109.06)μg/m~3,北京植物园为(127.04±109.34)μg/m~3);PM_(2.5)浓度全年均值为西山公园((104.02±26.45)μg/m~3)>北京植物园((82.52±28.18)μg/m~3);PM_(2.5)浓度季节变化呈"V"型在冬季最高,春季次之,夏季最低PM_(2.5)质量浓度季节变化西山公园为冬季((115.46±41.37)μg/m~3)>春季((112.39±18.50)μg/m~3)>秋季((106.37±24.25)μg/m~3)>夏季((81.87±12.60)μg/m~3),北京植物园为冬季((97.35±41.38)μg/m~3)>春季((94.07±12.21)μg/m~3)>秋季((93.17±31.42)μg/m~3)>夏季((61.86±16.70)μg/m~3);森林空旷地的空气质量优于森林内部PM_(2.5)浓度变化主要受地理位置、气象因素、人文因素的影响。  相似文献   

17.
为研究典型物流城市临沂市冬季重污染天气过程中PM_(2.5)化学组分特征,探讨污染成因,于2016年12月~2017年1月在6个采样点连续采集28 d的PM_(2.5)样品,并对其离子、元素、碳组分进行分析.采样期间PM_(2.5)质量浓度均值(145. 2±87. 8)μg·m~(-3),日均值超标率为82%; 2次污染过程中PM_(2.5)均值浓度分别为(187. 3±79. 8)μg·m~(-3)和(205. 3±92. 0)μg·m~(-3),为《环境空气质量标准》(GB 3095-2012)年均二级标准的5. 4和5. 9倍.化学组分质量重构结果显示二次无机离子(SNA)是冬季PM_(2.5)的主要组分(所占质量分数为51. 2%),其次为有机物OM(23. 8%),再次为矿物尘MIN(12. 7%).结合污染过程中化学组分的变化趋势和累积速率发现,第1个污染过程中SNA和OM是引起PM_(2.5)浓度增加的原因之一,第2个污染过程中SNA是导致污染的主因,硫氧化率(SOR)、氮氧化率(NOR)和OC/EC比值的日均变化趋势进一步验证了该结论. PMF源解析结果表明,临沂市冬季大气PM_(2.5)的首要源类为二次颗粒物和生物质燃烧混合源(分担率50. 0%),其次为燃煤源(16. 8%)、机动车(12. 9%)和城市扬尘(10. 0%),再次为工业源(5. 3%)和土壤尘(5. 0%). 2次污染过程中二次颗粒物的贡献较之冬季平均有明显增加,说明不利气象条件下二次颗粒物的生成、累积是导致重污染期形成的主因.  相似文献   

18.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

19.
典型时段西南地区PM_(2.5)及组分污染特征   总被引:2,自引:2,他引:0       下载免费PDF全文
洪沁  常宏宏 《环境工程》2018,36(4):108-112
选取西南地区为采样点,于2015年非重污染和重污染时期对环境PM_(2.5)进行采样,并对PM_(2.5)、水溶性离子和碳质组分的污染特征进行分析。结果显示:重污染与非重污染天PM_(2.5)质量浓度分别为(204.8±47.0)μg/m~3和(66.8±23.1)μg/m~3。重污染天气下SO_4~(2-)、NO_3~-和NH_4~+浓度分别是非重污染天气下的3.5,4.2,3.4倍,SIA浓度占PM_(2.5)的比例可高达42.2%。重污染期间OC和EC浓度分别是非重污染期间的4.8,2.7倍,SOC浓度在非重污染和重污染期间分别为(3.2±1.6),(25.6±15.2)μg/m~3,OC、EC较低的相关性也反映出重污染期间碳质组分来源的复杂性。  相似文献   

20.
长沙市秋季PM2.5中水溶性离子特征及其来源解析   总被引:3,自引:0,他引:3  
为探究长沙市秋季PM_(2.5)水溶性无机离子组成特征和来源,于2017年9月~11月在长沙城区连续采集大气颗粒物PM_(2.5)样品共85个,并用离子色谱仪分析样品中的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)。结果表明,长沙市秋季PM_(2.5)质量浓度的平均值为56. 3±39. 6μg/m~3,总水溶性无机离子质量浓度平均值为29. 47±19. 10μg/m~3,占PM_(2.5)的52. 3%,其中NO_3~-、SO_4~(2-)、NH_4~+是PM_(2.5)中最主要的离子成分。霾天PM_(2.5)平均质量浓度约是清洁天的3倍,NO_3~-、NH_4~+、K~+、Cl~-四种离子的快速增长对霾天PM_(2.5)中离子的贡献最大。由PMF模型解析可知,秋季大气PM_(2.5)主要来源于机动车尾气和燃煤源,而扬尘、生物质燃烧源、工业源和海盐的贡献不到30%。长沙市秋季大气污染呈现机动车尾气等移动源和燃煤等固定源的混合型污染为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号