首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对大气污染物进行时空分布特征研究是开展大气污染防治的关键技术支撑.本研究基于广州市52个城市环境空气质量监测站点数据,采用系统聚类法、经验正交函数 (EOF)等方法分析了2016—2020年广州市PM2.5浓度的时空分布特征.结果表明:①2016—2020年广州市PM2.5污染改善显著,PM2.5年均浓度从35.9 μg·m-3下降至23.0 μg·m-3,达标比例由96.2%上升至100%;PM2.5干季平均浓度为湿季的1.54倍, 国控点超标天数为湿季的10.5倍;PM2.5浓度日变化曲线峰谷值浓度差由7.5 μg·m-3下降至3.9 μg·m-3,日变化幅度趋于平缓.②广州市PM2.5浓度最高值区主要分布在东西两侧,高值区域范围逐年减小,全市PM2.5浓度分布趋于均匀;采用系统聚类法可将广州市PM2.5分成北部、中北部、 南部、中南部4个污染区,其中,北部区PM2.5浓度下降率仅为其他污染区的1/2,推测其PM2.5浓度下降可能更多地由区域背景浓度的下降贡献;EOF分解前3模态累积方差贡献率达93%,分别可表征PM2.5总体污染程度、在南北方向上的区域输送特征及由外围区域向中心城区聚集的 污染特征.  相似文献   

2.
使用1999—2016年0.01°×0.01°高空间分辨率的卫星反演PM2.5浓度数据集,结合精度为1 km×1 km的人口栅格数据,分析了"一带一路"沿线65个国家PM2.5污染与暴露风险的时空变化特征.结果表明:①PM2.5浓度存在着明显的区域分布差异,PM2.5浓度高值区(>35 μg·m-3)主要分布在地形平坦、人口密集的恒河平原、华北平原和中南半岛等区域,中值区(10~35 μg·m-3)主要集中在俄罗斯西部、中东欧、沙特东部和缅甸等区域,而低值区(<10 μg·m-3)主要分布在高海拔、高纬度与荒漠化地区,如青藏高原、西伯利亚、西亚卢特沙漠等区域;②65国年均PM2.5浓度从1999年的12.0 μg·m-3上升到2016年的14.1 μg·m-3,年均增长超过0.1 μg·m-3,累计有22.5%的区域有显著的增加趋势,仅有5.2%的区域呈显著下降趋势;③2000—2016年,PM2.5浓度在35 μg·m-3以上的区域面积比重从2.2%上升到7.2%,暴露人口占比从18.9%增加至41.9%;④人口暴露风险平均值从2000年的665.2增加至2016年的1140.4,Hurst总体均值为0.59,其中大于0.5的持续性区域占82.3%,持续性特征以弱持续性为主.  相似文献   

3.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-r=0.90;p<0.01),Ca2+与Mg2+r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加.  相似文献   

4.
中国城市PM2.5时空动态变化特征分析:2015-2017年   总被引:3,自引:0,他引:3  
近年来我国雾霾事件频发.采用2015-2017年全国329个地级及以上城市PM2.5浓度每小时监测数据,利用全域空间自相关法、自然正交函数和空间描述统计分析的方法,从时空视角来揭示PM2.5浓度的时间动态变化规律以及空间分布特征.研究发现:①从全国范围内来看,PM2.5浓度均值逐年降低,降幅最高为夏季,最低为冬季,PM2.5浓度位于40~60 μg·m-3之间的城市降幅较大.PM2.5浓度年内表现为"冬高夏低,春秋居中"的时间动态变化规律,且各年PM2.5浓度达优良率不断提高.②细颗粒物污染改善程度最大的为德州,京津冀城市群和长三角城市群改善程度居中.全国PM2.5污染范围逐年缩小,但新疆西部和冀鲁豫仍为高污染区,西南和东南沿海地区为低污染区.各区域污染的空间集聚逐年缩小.优良达标率在空间分布特征上无显著变化.③"大气十条"部分指标已完成,未来细颗粒物污染治理重点区域仍以京津冀地区为核心.在防治空气污染方面,必须加强区域联防联控机制.  相似文献   

5.
黄晓军  祁明月  李艳雨  王森  黄馨 《环境科学》2020,41(12):5245-5255
近年来以细颗粒物PM2.5为代表的大气污染已给人体健康带来严重风险.基于PM2.5遥感反演数据和人口格网分布数据,测度关中地区人口暴露于PM2.5的风险程度,并采用Theil-Sen Median趋势分析、Mann-Kendall检验和空间自相关分析等方法,探索2000~2016年关中地区PM2.5及人口暴露风险的时空演化过程.结果表明:①2006、2007和2013年关中地区污染重且范围广,这3 a在40%以上区域PM2.5年均质量浓度超过了35 μg·m-3的限值,2000~2016年关中地区PM2.5空间分布范围不断扩大,形成了自中部向东北部的连续带状集中分布区;②2000~2016年,关中地区几乎每年都有超过60%的人口暴露在PM2.5年均35 μg·m-3质量浓度限值以上,且人口暴露风险不断加剧,尤其是2011年后,人口暴露的高风险区范围持续增加;③2000~2016年关中地区PM2.5人口暴露风险格局大体相似,较高等级以上风险区主要集中在关中地区中部,东西方向上形成连续的带状分布区,高值区集中在几个主要城市的中心城区,低值区则主要分布在关中地区周边广大区域.  相似文献   

6.
徐勇  韦梦新  邹滨  郭振东  李沈鑫 《环境科学》2024,45(5):2596-2612
基于PM2.5遥感数据,采用Theil-Sen Median趋势分析和Mann-Kendall显著性检验,分析2000~2021年山东省PM2.5浓度时空变化特征,结合地理探测器,在省-市-县三级空间尺度上探测影响山东省PM2.5浓度空间分异的影响因子影响力.结果表明:①时间上,2000~2021年山东省ρ(PM2.5)均值在38.15~88.63 μg·m-3之间,略微高于《环境空气质量标准》中可吸入颗粒物的二级标准限值(35 μg·m-3).在年际尺度上,2013年是ρ(PM2.5)变化的峰值年,其值为83.36 μg·m-3,据此将山东省PM2.5浓度变化趋势分为两个阶段:持续上升和快速下降阶段.在季节尺度上,PM2.5浓度呈现“夏低冬高,春秋居中”分布特征和先降后升的“U”型变化规律.②空间上,山东省PM2.5浓度呈现出“西高东低”的空间分布格局,PM2.5浓度高值区分布山东省西部地区,低值区则分布在东部半岛地区.PM2.5浓度空间变化趋势呈现显著的空间异质性,极显著下降的区域主要分布在东部半岛地区.③因子探测结果表明,气候因子是影响山东省PM2.5浓度空间分异的重要影响因素,平均气温对山东省PM2.5浓度空间分异的影响最高,q值为0.512.省-市-县多尺度探测结果显示,影响PM2.5浓度空间分异的影响因子及其影响力在不同空间尺度上具有差异性.省级尺度上,平均气温、日照时数和坡度是影响PM2.5浓度空间分异的主要影响因子;市级尺度上,降水、高程和相对湿度是影响PM2.5空间分异的主要影响因子;县级尺度上,降水、平均气温和日照时数是影响PM2.5浓度空间分异的主要影响因子.  相似文献   

7.
为了评估中国大气环境治理带来的健康效益,确定健康风险评价的主要驱动因素,本文使用结合人群活动因子的综合暴露响应模型,对中国东部和中部地区2013~2017年可归因于PM2.5的健康经济效益进行了估算,并量化了人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的影响贡献.结果表明,2013~2017年研究区域内PM2.5人口加权浓度下降了28.73%,PM2.5年均暴露浓度在35 μg·m-3及以下的人口比例从11.23%增加到27.91%.PM2.5浓度下降使得2017年归因死亡数下降了14.43%,可避免经济损失为5588.41亿元.当PM2.5暴露浓度达到国家二级标准(35 μg·m-3)、一级标准(15 μg·m-3)和世卫组织建议标准(10 μg·m-3)时,归因死亡人数较基准年(2017年)将减少8.22%、55.05%和79.36%,避免经济损失3190.85、21374.38和30812.97亿元.人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的贡献分别为-2.69%、-12.38%、1.66%和14.57%,其中污染物浓度降低是减轻健康负担的主导因素.中国的大气污染治理取得了显著成效,但在高PM2.5浓度和高人口密度的地区,大气污染导致的健康负担仍然很重,需要实施更加严格的空气污染控制政策.  相似文献   

8.
为了验证PM2.5进入肺部后,在肺巨噬细胞清除PM2.5组分中是否发生细胞焦亡效应,本研究以THP-1细胞作为人巨噬细胞模型,以不同浓度PM2.5暴露于THP-1细胞,采用CCK-8法检测细胞存活率,试剂盒检测乳酸脱氢酶(LDH)释放水平,荧光显微镜下观察细胞PI染色情况,流式细胞仪检测Annexin V/PI染色,蛋白免疫印迹(Western blotting)检测焦亡相关蛋白NLRP3、ASC、caspase-1、GSDMD的表达,以及ELISA法检测IL-1β、IL-18的分泌等来检测PM2.5暴露诱导THP-1细胞的焦亡发生和炎症因子释放水平.结果显示:THP-1细胞暴露于PM2.5后,细胞存活率的降低与PM2.5暴露浓度的增加呈正相关;THP-1暴露PM2.5 48 h后,细胞胀大并呈气泡状;与空白对照(PBS)组相比,PM2.5暴露组与阳性对照组(1.0 μg·mL-1 LPS+5.0 mmol·L-1 ATP)的细胞上清中LDH水平显著提高;流式细胞仪检测显示Annexin V/PI染色双阳区的细胞比例显著提高;Western blotting结果显示,与对照组相比,PM2.5暴露组炎症小体蛋白NLRP3、ASC、caspase-1表达水平显著提高,而且caspase-1和焦亡执行蛋白GSDMD发生了切割;ELISA结果显示,与对照组相比,PM2.5暴露组IL-1β与IL-18分泌显著提高.研究表明,PM2.5暴露可诱导THP-1细胞炎症性细胞焦亡效应.  相似文献   

9.
为探究新乡市大气PM2.5中水溶性无机离子(WSIIs)的污染演变、来源特征及其气象影响,利用URG-9000在线监测系统于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对PM2.5组分进行在线观测.结果表明,TWSIIs(总水溶性无机离子)与PM2.5的季节变化特征一致,季度ρ(TWSIIs)均值变化范围为19.62~72.15 μg·m-3,在PM2.5中的占比超过66%,WSIIs是大气PM2.5的重要组分.年均NO3-/SO42-(质量浓度比)为2.11,且呈现逐年增加的趋势,移动源对二次无机气溶胶(SNA)的影响不容忽视,年均[NH4+]/[NO3-](量比)为1.95,说明农业源是大气中氮的主要贡献者.后向轨迹分析表明,在盛行东北风且风速较大时,PM2.5中Ca2+和Mg2+的浓度较高.低温高湿的气象条件下(T<8℃,RH>60%),SOR和NOR值均较高,更多的气态前体物SO2和NO2转化为颗粒态的SO42-和NO3-.与SOR不同,在高温条件下(T>24℃),NOR并没有表现出高值特征,与高温条件下NH4NO3的分解有关.结合PMF和后向轨迹分析,来自西北方向的气团所对应的扬尘源对WSIIs的贡献较大,观测站点周边区域的低空低速气团所对应的二次硫酸盐以及二次硝酸盐和生物质源对WSIIs的贡献较大.  相似文献   

10.
基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.  相似文献   

11.
为了进一步揭示PM2.5暴露对肺的毒性损伤作用,本工作采用16HBE人肺支气管细胞,检测了PM2.5暴露后16HBE的细胞活性、细胞中铁含量、GSH含量、LPO和MDA的产生情况.结果显示,PM2.5(200 μg·mL-1)处理16HBE细胞24 h后可导致细胞存活率下降、细胞铁含量增加、细胞内LPO和MDA生成量增加、GSH含量降低,而铁死亡抑制剂DFOM (6.25 μmol·L-1)及Fer-1(12.50 μmol·L-1)可以显著减轻PM2.5对细胞的毒性损伤作用,抑制MDA的产生,减少GSH的损耗.透射电子显微镜的形态学观察显示,PM2.5暴露诱导细胞出现铁死亡的特征性线粒体超微结构改变,qPCR检测结果进一步提示PM2.5暴露后细胞内铁死亡相关基因FTH1、NCOA4和ALOX15的表达量显著性增加,GPX4显著降低.结果说明PM2.5暴露引起支气管上皮细胞16HBE发生铁死亡.  相似文献   

12.
陈伟  徐学哲  刘文清 《环境科学》2024,45(4):1950-1962
苏皖鲁豫交界区域是长三角和京津冀及周边两大大气污染治理重点区域的连接带,揭示该区域PM2.5和O3污染特征对推动区域大气污染联防联控有着重要意义.基于2017~2021年苏皖鲁豫交界区域22个地市的国家空气环境监测网络观测数据,探讨了该区域PM2.5和O3浓度的时空变化特征及气象影响.结果表明:①2017~2021年区域PM2.5浓度呈现逐年下降趋势,PM2.5浓度月均值呈现“U型”分布,冬季PM2.5浓度仍维持高位.O3-8h-90%浓度呈现波动下降趋势,O3-8h-90%浓度月均值变化呈“M型”分布,夏秋季O3污染程度未有好转.②与2017年相比,2021年PM2.5-O3复合污染天数减少了52 d,但PM2.5污染仍占主导地位.③PM2.5和O3污染区域主要集中在区域中部和北部城市,且中部城市PM2.5和O3污染程度均改善显著.④采用Moran''s I指数和LISA指数分析了区域PM2.5和O3-8h-90%浓度的全局和局部空间自相关性,PM2.5和O3-8h-90%浓度均具有空间相关性,PM2.5浓度主要表现为高值-高值聚集或低值-低值聚集现象,且高值-高值聚集有从中部向西部转移的现象,2020年和2021年O3-8h-90%浓度表现为高值-高值聚集或低值-低值聚集现象.⑤结合气象要素数据,利用KZ滤波方法量化排放源与气象条件对区域PM2.5和O3-8h浓度的贡献,两者主要受到污染物排放影响,贡献率分别为101.0%和99.3%,表明污染物减排是驱动区域空气质量改善的主要因素.此外,气象条件对PM2.5浓度的贡献在一、四季度为正值,二、三季度为负值,而对O3-8h浓度的影响则反之,且气象条件对不同城市PM2.5和O3-8h浓度的影响程度存在较大差异.  相似文献   

13.
张军  金梓函  王玥  李旭  戴恩华 《环境科学》2022,43(12):5333-5343
PM2.5作为大气污染的主要来源,其时空演变格局和影响因素对于大气环境质量调控具有重要意义.基于2000~2020年PM2.5遥感反演数据,采用空间自相关和数理统计方法分析关中平原城市群PM2.5时空演变特征,以海拔、年均气温和人均GDP等10种因子为自变量,结合地理探测器和多尺度地理加权回归(MGWR)模型对PM2.5污染影响因素进行空间分异探究.结果表明:①2000~2020年,关中平原城市群PM2.5浓度总体呈下降趋势.浓度高值区集中在研究区中东部,低值区集中在研究区西部.热点区域集中在临汾市和运城市,冷点区则集中在天水市和宝鸡市.②自然因子在关中平原城市群PM2.5污染中占主导地位,2020年PM2.5浓度主控影响因子按解释力大小排序依次为:海拔>年均气温>地形起伏度>年均相对湿度>年降水量>人均GDP>植被覆盖度>能源消耗指数.③主控影响因子按照作用尺度大小排序依次为:植被覆盖度>年均气温>能源消耗指数>年降水量>地形起伏度>海拔>人均GDP>年均相对湿度.其中人均GDP、地形起伏度、能源消耗指数和年均气温主要为正向作用,植被覆盖度、年降水量、海拔和年均相对湿度主要为负向作用.研究得出了关中平原城市群PM2.5时空演变格局和影响因素,可为相关部门制定大气污染防治政策提供决策依据,同时丰富实证研究.  相似文献   

14.
黄小刚  赵景波  辛未冬 《环境科学》2021,42(7):3107-3117
基于遥感反演数据,研究了2016年长三角地区PM2.5浓度空间分布特征,从气象因素、地形、植被和大气污染物排放清单等方面选取评价因子,以0.25°×0.25°网格为评价单元,利用GAM模型研究了长三角PM2.5空间分布的影响因素及交互效应.结果表明:①长三角PM2.5浓度总体呈北高南低、西高东低的分布态势,但以南北向差异为主.长三角南部PM2.5浓度多低于35 μg·m-3,PM2.5超标零星出现在城镇周围,呈孤岛状分布.北部PM2.5浓度多超过35μg·m-3,PM2.5污染多呈连片状分布.②长三角PM2.5浓度分布具有显著的正的空间自相关性,高高集聚区集中分布在长三角北部,低低集聚区集中分布在南部.③ GAM模型分析表明,地形起伏度、气温和降水量对PM2.5浓度主要呈负向影响;污染物排放量主要呈正向影响;风速<2.5 m·s-1时影响不显著,风速≥2.5 m·s-1后有显著的负向影响.地形起伏度、气温和降水量南高北低是造成长三角PM2.5北高南低的重要原因,风速东高西低是造成长三角PM2.5浓度东西向差异的原因之一.④除地形起伏度-PM2.5排放量外,其余因素两两间的交互项均通过了显著性检验,对PM2.5分布有显著的交互效应.  相似文献   

15.
吴英晗  许嘉  段玉森  伏晴艳  杨文 《环境科学》2023,44(10):5370-5381
地统计模型被广泛应用于环境空气污染物暴露模拟,但不同建模方法及其模拟结果之间的对比研究较少.基于上海2016~2019年55个环境空气监测点位的NO2和PM2.5观测数据,以及交通路网、排放源兴趣点和卫星数据等地统计变量,应用偏最小二乘回归(PLS)、监督学习线性回归(SLR)和机器学习随机森林(RF)这3种建模方法创建年暴露模型,并进一步应用普通克里金插值(OK)法分析模型残差,构建复合模型.应用交叉验证对模型的模拟效果进行检验,选取每一种建模方法的最优模型结构(是否应用OK)作为最终模型.结果表明,NO2模型中表现最好的是RF-OK (Rmse2为0.70~0.82)和PLS-OK模型(Rmse2为0.78~0.84);PM2.5模型中PLS模型(Rmse2为0.62~0.71)优于SLR-OK (Rmse2为0.40~0.79)和RF-OK (Rmse2:0.31~0.56)模型.应用3种建模方法对上海1 km网格开展年暴露模拟和对比,NO2模型间模拟结果的相关性(r为0.82~0.91)高于PM2.5模拟结果的相关性(r为0.66~0.96).基于3种模型2019年的模拟结果,评估了上海NO2和PM2.5的人群暴露水平.  相似文献   

16.
本研究在河北工程大学监测站点开展了大气中56种VOCs、NOx以及气象参数的长期在线监测,结合2013—2019年国控站的在线监测数据,对邯郸市PM2.5-O3复合污染特征进行分析.结果表明,邯郸市2013—2019年复合污染天数波动较大,近几年呈现增加趋势,且集中在每年的春夏季.2013—2017年复合污染天数峰值均出现在6月,2018年和2019年出现在3月和4月.气象因素分析结果表明,温度、湿度和气压对邯郸市复合污染影响较明显,当温度为21.0~29.0℃、湿度较高、气压偏低的条件下,更容易发生复合污染,而风速对邯郸市复合污染影响较小.对PM2.5与O3相互作用分析发现,冬季高浓度PM2.5对O3有抑制作用,夏季PM2.5浓度不超标时,O3浓度随其升高而上升,PM2.5浓度超标后变化趋势相反,当PM2.5浓度大于125 μg·m-3时不再出现PM2.5-O3复合污染.虽然近年来PM2.5、SO2和NO2浓度下降,但二次转化率依然较高甚至有加强趋势.利用VOCs/NOx值分析邯郸市O3生成敏感性,结果显示邯郸市春冬季属于VOCs控制到NOx控制的过渡区,夏秋季属于NOx控制区,且复合污染日VOCs/NOx值(6.3)最小,清洁日(9.3)最大.复合污染时NO3-和OC浓度较高,OC/EC值与其他污染日相比最大,说明复合污染时二次污染严重,有效治理PM2.5-O3复合污染必须减排能同时形成O3和二次有机气溶胶的高活性有机物.  相似文献   

17.
李勇  廖琴  赵秀阁  白云  陶燕 《环境科学》2021,42(4):1688-1695
开展全国范围归因于PM2.5污染的健康负担和经济损失研究,对于污染防控政策至关重要.首先利用空气质量模型(WRF-Chem)模拟结果,分析2016年PM2.5的时空分布和暴露水平;同时结合环境健康风险及环境价值评估方法,评估PM2.5污染引起的健康负担和经济损失;最后基于情景分析方法,预估实现具体PM2.5控制目标的健康经济效益.结果表明,2016年,我国PM2.5污染主要集中在京津冀及周边地区、长三角地区、四川盆地以及西北沙漠地区,且71.49%的人口暴露在PM2.5浓度高于35 μg·m-3的环境空气中;PM2.5污染造成约106.04万人过早死亡,约占总死亡人数的10.9%,其中冠心病和中风约占80%;PM2.5污染造成健康经济损失7059.31亿元,约占国内生产总值(GDP)的0.95%.PM2.5污染造成的健康负担和经济损失存在显著空间差异,主要分布在PM2.5浓度和人口密度高的中东部地区;情景分析表明,我国所有地区PM2.5浓度降至35 μg·m-3,只能避免17.11%的健康经济损失,而降至10 μg·m-3可以带来80.47%的健康经济效益.建议环境管理者进一步加强控制力度,更好地保障居民的健康和财富利益,尤其是心脑血管疾病患者等敏感人群以及归因死亡率高的地区.  相似文献   

18.
为研究甘肃南部城镇PM2.5及水溶性离子(WSIIs)浓度水平,于2019年4月—2020年2月在甘肃成县按季度进行PM2.5样品采集,分析了其变化特征,并运用相关和主成分分析法进行来源解析.结果表明:采样期间甘肃成县PM2.5年平均质量浓度为(57.2±26.9) μg·m-3,表现为冬季>春季>秋季>夏季的季节变化特征,冬季质量浓度约为夏季的1.9倍,全年空气质量优良率为81%,其中夏季达100%.WSIIs质量浓度呈现SO42->NO3->Na+>NH4+>Ca2+> K+>Cl->Mg2+的特征.SNA是浓度水平最高的3种水溶性离子,占8种主要水溶性离子浓度的70.1%.ρ(NO3-)/ρ(SO42-)平均值为0.6,表明工农业生产及化石燃料燃烧排放等固定源是颗粒物污染的主要来源.新型冠状病毒疫情期间人员管控对PM2.5和水溶性离子中SNA质量浓度影响显著,PM2.5平均质量浓度降幅达44.2%.源解析表明,PM2.5中WSIIs主要来自化石燃料燃烧、生物质燃烧及二次源和道路建筑扬尘等.  相似文献   

19.
为了全覆盖、高分辨率和高精度识别京津冀地区大气PM2.5质量浓度时空变化,选取多角度大气校正算法遥感反演的1km AOD为主要预测因子,多种气象要素和土地利用要素为辅助预测因子,构建了混合效应模型+地理加权回归模型的两阶段统计模型,并针对京津冀地区PM2.5污染较严重的特点,模型中引入了AOD2等独特预测因子.通过上述两阶段模型定量预测了研究区2017年1 km2空间分辨率的每日PM2.5质量浓度.结果表明,模型交叉验证的决定系数R2为0.94,斜率为0.95,均方根预测误差为13.14 μg·m-3,在前人基础上预测精度进一步提升,可用于PM2.5浓度时空变化预测与分析.2017年,京津冀地区PM2.5浓度年均值为44.96 μg·m-3,年均值范围在0~89.89 μg·m-3之间.PM2.5浓度时空变化差异性明显,整体上呈现"平原西南部浓度高、平原东北部浓度中等和山区高原浓度低"的空间分布格局以及"冬季浓度高、夏季浓度低和春秋过渡"的季节变化特点.模型预测结果的高时空分辨率可以支持流行病学研究在较小区域的暴露评估和识别小尺度污染源的时空变化,分析发现在大气污染防治行动计划实施以来,污染较严重的冀中南山麓平原区可能出现了重要污染源的空间变化.模型预测与分析结果可以为京津冀大气污染防治提供科学支撑.  相似文献   

20.
基于2015~2021年的1~3月北京市大气PM2.5浓度与化学组成长期观测数据,分析了2022年北京冬季奥林匹克运动会(冬奥会)和北京冬季残疾人奥林匹克运动会(冬季残奥会)历史同期的PM2.5污染态势、化学组成特征以及潜在源区.2015~2018年的1~3月重污染[日均ρ(PM2.5)>75 μg·m-3]天数以及重污染期间PM2.5平均值下降十分显著,之后这两者未发生明显改变.2018~2021年的1~3月每年平均发生重污染23 d,重污染天ρ(PM2.5)平均值约为120.0 μg·m-3.2015~2021年的1~3月超长重污染过程(连续重污染超过5 d)平均每年发生2~3次,其中2021年发生3次,且持续时间最长达到8 d.历年冬奥会历史同期发生重污染的天数为2~9 d,春节期间烟花爆竹大量燃放可能是该时期重污染发生的重要原因之一;冬季残奥会历史同期重污染天数一般为1~5 d,但2021年受频繁出现的静稳天气影响,重污染天数高达9 d.在同时段重污染期间,PM2.5化学组成均以二次组分为主,例如在PM2.5可测组分中,2020年NO3-质量分数高达46%,较同年清洁天(11%)显著增加;SO42-质量分数为12%~19%,说明当前硫酸盐污染仍不容忽视.北京市1~3月PM2.5主要贡献区域包括内蒙古自治区中西部、河北省、天津市、山西省、陕西省、山东省中西部和河南省北部.研究结果将为北京市冬季空气质量持续改善以及2022年冬奥会与冬季残奥会期间北京市环境空气质量保障提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号