首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
为掌握重型天然气车在实际道路行驶过程中的排放特性,使用便携式车载排放测试系统(PEMS)对2辆国Ⅴ重型天然气车(简称“国Ⅴ车辆”)和2辆国Ⅵ重型天然气车(简称“国Ⅵ车辆”)进行实际道路排放测试,分析了CO和NOx的排放特征和不同工况下的排放因子. 结果表明:①国Ⅴ车辆在3种代表性道路类型(市区路、市郊路、高速路)下CO和NOx的高排放区主要分布在中低速区域的加速阶段,而国Ⅵ车辆CO和NOx的高排放区在市区和市郊路上主要集中在速度大于30 km/h区间,在高速路两种污染物的高排放区分布较为零散. ②根据MOVES模型划分机动车比功率区间(VSP Bin)后发现,国Ⅵ车辆在Bin 11~Bin 18区间,CO和NOx排放速率基本稳定且处于较低水平;在Bin 21~Bin 28区间,CO和NOx排放速率均随VSP的增加而逐渐升高. ③国Ⅴ车辆综合工况下CO和NOx排放因子分别为国Ⅵ车辆的1.1~3.9和3.3~8.2倍,其中,在市区路分别为3.0~25.0和11.3~30.2倍. ④国Ⅴ车辆的NO2/NOx(浓度比,下同)远高于国Ⅵ车辆,且在高速路国Ⅴ和国Ⅵ车辆的NO2/NOx均最低. 此外,对比不同研究的测试结果发现,本研究国Ⅵ车辆的CO和NOx排放因子高于其他研究中国Ⅵ重型柴油车. 研究显示,国Ⅵ车辆的CO和NOx排放因子均低于国Ⅴ车辆,且在市区路下与国Ⅴ车辆差距更明显,因此,推广使用国Ⅵ天然气车,逐步淘汰采用稀薄燃烧技术的天然气车,能有效减少NOx的排放.   相似文献   

2.
为揭示混合动力轿车在不同通行时段的市区道路尾气排放特征,利用高精度的移动排放测试仪,对混合动力轿车进行不同通行时段的市区道路尾气排放上的测试,分析混合动力轿车在顺畅时段和拥堵时段的尾气排放特征。试验数据分析表明:速度特征上,混合动力轿车在顺畅时段CO、NOx和HC的平均排放速率和平均排放因子的峰值主要出现在低速区域,在拥堵时段CO、NOx和HC的平均排放速率和平均排放因子的峰值主要出现在发动机起动初期速度区间;比功率特征上,混合动力轿车在顺畅时段和拥堵时段高比功率区间CO、NOx和HC的平均排放速率和平均排放因子的峰值都明显高于低比功率区间和负比功率区间;道路拥堵虽然会延长混合动力轿车的通行时间,但同时增加了其纯电力驱动的低速行驶时间,使尾气排放并没有显著增加。  相似文献   

3.
在用汽油和柴油车排放颗粒物的粒径分布特征实测   总被引:1,自引:1,他引:0  
分别选取国3~国5轻型汽油车9辆和重型柴油车15辆采用实验室底盘测功机和全流稀释定容采样系统(CVS)开展了汽柴油车尾气颗粒物排放因子实测和粒径分布比较,分析并比较了行驶工况和排放控制水平对汽柴油车尾气颗粒物排放因子和粒径分布的影响.结果表明,轻型汽油车和重型柴油车的颗粒数量单位燃料平均排放因子分别为(4.1±4.0)×10~(14) kg~(-1)和(5.7±4.3)×10~(15) kg~(-1),重型柴油车颗粒数量排放因子是轻型汽油车的(14±7)倍.轻型汽油车超高速工况下颗粒物数量排放因子显著高于其他工况,颗粒数排放因子达到(5.1±5.0)×10~(13) km~(-1),分别是低速、中速和中速工况的11.7、 14.1和7.3倍,重型柴油车高速工况颗粒数排放因子分别是低速和中速工况的2.5倍和1.4倍,且增长的颗粒物主要为核模态颗粒.国3~国5排放控制水平下汽油车颗粒物数量排放因子分别为(2.7±1.7)×10~(13)、(2.6±1.3)×10~(13)和(1.6±1.2)×10~(13) km~(-1),重型柴油车颗粒物数量排放因子分别为(2.2±1.2)×10~(15)、 2.0×10~(15)和(7.1±2.1)×10~(14) km~(-1),随着排放控制水平的提升,轻型汽油车和重型柴油车颗粒数排放控制总体上均呈现较好地下降趋势,但柴油车排放粒径110nm以上颗粒物随排放标准的提升未有改善,虽然柴油车粒径110 nm以上的数量排放因子相对较低,但其对环境的危害不容忽视,应当引起必要的关注.  相似文献   

4.
不同排放标准公交车燃用生物柴油颗粒物排放特性   总被引:2,自引:1,他引:1  
基于重型底盘测功机,对比研究了满足国Ⅲ、国Ⅳ、国Ⅴ排放标准的柴油公交车分别燃用生物柴油与柴油混合燃料B0/B5/B10在中国典型城市公交车循环下的颗粒物排放特性.结果表明燃用B0/B5/B10时,国Ⅴ车相对国Ⅲ车总颗粒数量和质量排放分别降低约68.1%、56.2%、57.5%和52.7%、64.8%、88.5%,相对国Ⅳ车,总颗粒质量排放分别降低了约43.0%、47.3%和42.1%,但数量排放分别上升了约4.0%、7.6%和14.7%.国Ⅲ车核态颗粒排放主要来自高速行驶工况,而国Ⅳ、国Ⅴ车主要来自中低速行驶工况;国Ⅲ、国Ⅳ、国Ⅴ车聚集态颗粒排放主要都来自中低速行驶工况.其中在车速较低时,国Ⅴ、国Ⅳ车相对国Ⅲ车核态颗粒数量和质量排放明显降低,聚积态颗粒也有降低,但国Ⅴ车相对国Ⅳ车改善不明显,核态颗粒数量和质量排放反而增加,且随着生物柴油掺混比例的上升,增幅越明显.在高速时,国Ⅲ车核态颗粒数量和质量排放急剧增加,国Ⅴ、国Ⅳ车略有增加,且国Ⅳ车聚集态颗粒数量和质量排放明显大于国Ⅴ车和国Ⅲ车.燃用生物柴油掺混比例较大的B10时,国Ⅲ车较大粒径颗粒排放急剧恶化,聚集态颗粒数量和质量排放大幅增加,不适合推广应用较大生物柴油掺混比燃油.  相似文献   

5.
利用法规认证全流稀释定容采样系统以及满足精度要求的颗粒物排放分析系统,运行GB/T 19754—2005《重型混合动力电动汽车能量消耗量试验方法》推荐的中国典型城市公交循环(CCBC),分析了在用国Ⅲ/国Ⅳ/国Ⅴ柴油公交车以及在用国Ⅲ柴油公交车进行DOC(氧化催化转化器)+CDPF(催化型颗粒捕集器)改造后的颗粒物质量、固态PM2.5数量排放特性.结果表明:国Ⅲ、国Ⅳ、国Ⅴ柴油公交车的颗粒物质量排放因子分别为63.77、63.20和14.42 mg/km,固态PM2.5数量排放因子分别为3.87×1013、3.10×1013和2.77×1013 km-1.与国Ⅲ柴油公交车相比,国Ⅳ柴油公交车的颗粒物质量、固态PM2.5数量排放因子分别降低了1%和20%;国Ⅴ柴油公交车分别降低了77%和28%;进行DOC+CDPF改造的国Ⅲ公交车颗粒物质量、固态PM2.5颗粒数量排放因子分别为1.78 mg/km和3.19×1011 km-1,比未改造前分别降低了97%和99%.中国典型城市公交循环的低速(0~21.8 km/h)、中低速(0~37.5 km/h)、中高速(0~51.7 km/h)和高速(0~60.0 km/h)4类行驶工况中,低速行驶工况的固态PM2.5数量排放因子最高,约是整个循环的2倍;在加速、匀速、减速、怠速4种行驶模式中,加速行驶模式产生的固态PM2.5单位时间排放量最高,其分别为减速和怠速行驶模式下的10和6倍.研究显示,提高柴油公交车的平均车速,降低加速行驶比例有利于降低其颗粒物排放;DOC+CDPF可显著降低国Ⅲ柴油公交车的颗粒物排放.   相似文献   

6.
北京市机动车尾气排放因子研究   总被引:21,自引:10,他引:11  
樊守彬  田灵娣  张东旭  曲松 《环境科学》2015,36(7):2374-2380
通过调研北京市机动车车型构成、车辆行驶工况、环境温度、油品品质等基础数据,利用COPERTⅣ模型计算了机动车尾气中CO、NOx、HC和PM的排放因子.应用车载测试系统对典型轻型汽油客车和柴油货车的实际道路排放因子进行测量,并将测量结果与模型计算结果对比,结果发现国Ⅳ标准下,轻型汽油客车的CO排放因子的实测数据是模型数据的0.96倍,NOx的实测数据是模型数据的0.64倍,HC的实测数据是模型数据的4.89倍.对于国Ⅲ排放标准的柴油货车,轻型、中型和重型货车的CO排放因子,实测数据分别是模型数据的1.61、1.07和1.76倍,NOx排放因子的实测数据是模型数据的1.04、1.21和1.18倍,HC排放因子的实测数据是模型数据的3.75、1.84和1.47倍,PM排放因子则为模型数据是实测数据的1.31、3.42和6.42倍.  相似文献   

7.
机动车排放是大气PM2.5污染的主要来源之一,而在机动车排放的PM2.5中,约80%以上来自重型柴油车.为了研究重型柴油车尾气PM2.5及其碳质组分的排放特征,本研究基于车载排放测试系统(PEMS),对7辆不同排放阶段的重型柴油车进行了尾气PM2.5采样分析,并进一步分析了PM2.5中的OC和EC组分.结果显示,从国Ⅰ到国Ⅲ阶段,重型柴油车PM2.5排放因子分别为(0.466±0.300)g·km-1、(0.112±0.025)g·km-1和(0.056±0.034)g·km-1,表明随着排放标准的加严,测试车辆的尾气PM2.5排放因子呈现显著的下降趋势.行驶工况对重型柴油车尾气PM2.5及其碳质组分排放存在较大影响,PM2.5排放因子在高速和市区工况下相对较高,而在市郊工况下则较低;OC和EC的比值在市区工况下为(2.86±1.07)∶1,而在市郊和高速工况下为(0.97±0.49)∶1.  相似文献   

8.
应用PART5模式计算机动车尾气管的颗粒物排放   总被引:12,自引:1,他引:11  
采用修正的PART5模式获得了北京市机动车尾气管的颗粒物(PM10和PM2.5)排放因子.在此基础上,计算了北京市1995和1998年机动车PM10和PM2.5的排放总量,并确定了分车型的排放分担率和颗粒物中各组分(铅、硫酸盐、可溶性有机物和残余碳等)的比例.结果表明,北京市机动车PM10和PM2.5的平均排放因子很高,其中汽油车、摩托车和重型柴油车的排放因子分别是美国同期水平的1.7~8.6倍、2.1~3.5倍和1.3~1.5倍.1995年北京市机动车尾气管排放的PM10和PM2.5分别为2445t和1890t,1998年则分别增至3359t和2694t,增加的幅度为37.4%和42.5%.  相似文献   

9.
柴油车的黑碳排放对空气质量和气候变化有重要影响,但我国柴油车黑碳排放清单编制仍有较大局限性. 为进一步提高柴油车黑碳排放清单编制精度,采用整车转毂台架和热光折射的方法研究不同排放标准、行驶工况和负载状况对重型柴油货车黑碳排放的影响. 结果表明:我国排放标准升级对重型柴油货车的黑碳排放有重要影响,从国Ⅰ、国Ⅱ排放标准升级到国Ⅲ、国Ⅳ和国Ⅴ排放标准,黑碳在颗粒物中的占比由41%左右逐步提至72%左右. 行驶工况对重型柴油货车的黑碳排放也有一定影响,车辆在C-WTVC (中国重型商用车燃料消耗量测试工况)下的黑碳排放占比较VECC (重型车典型道路行驶工况)下高5%~10%. 与半载状态相比,重型柴油货车在满载状态下黑碳排放占比更高,国Ⅲ、国Ⅳ重型柴油货车满载状态下黑碳排放占比较半载状态高7%~8%,国Ⅱ重型柴油货车满载状态下黑碳排放占比较半载状态高15%左右. 研究显示,柴油货车黑碳排放清单编制要综合考虑排放标准、驾驶特征、负荷状况等对黑碳排放的影响,不宜使用固定系数利用颗粒物排放因子外推黑碳排放因子.   相似文献   

10.
广州市机动车尾气排放特征研究   总被引:3,自引:1,他引:2  
文章利用COPERT IV模型计算广州市机动车尾气排放因子,结合机动车保有量和构成,获得2008年广州市机动车尾气排放总量并对排放因子的速度敏感性,以及不同车型、不同排放标准、不同燃料类型机动车排放特征进行了分析。结果表明:2008年广州市机动车CO、NOX、VOC和PM的排放总量分别为138 772.42 t、80 868.69 t、24 907.26 t和3 171.97 t。摩托车和小客车是CO和VOC的主要贡献车型,贡献率总和分别达到78.31%和70.52%;而作为NOX和PM的主要贡献车型,大客车和重型货车的贡献率总和分别达到78.94%和83.72%。国0标准机动车排放水平高于其他排放标准的车型,CO和VOC的排放分担率接近于保有量比例的2倍。汽油车是CO和VOC的主要贡献车型,其排放贡献率超过80%;而PM排放主要以柴油车为主;柴油车的NOX排放总量高,接近于汽油车的2倍。  相似文献   

11.
国Ⅲ柴油公交车尾气排放实际道路测试研究   总被引:1,自引:0,他引:1  
应用车载式尾气排放测试设备对北京国Ⅲ排放标准的柴油公交车在实际道路上的尾气排放特征进行了实测研究,测试时间为10 552 s,行驶里程达到61.97 km,共获得10 552组有效数据,测试数据能够反映车辆在实际道路上的排放特征。车辆在实际道路上尾气排放NOx、CO、THC和PM的排放因子分别为14.12±2.54g/km、8.04±2.51 g/km、0.158±0.022 g/km和3.16±1.73 g/km。研究结果表明,油耗及污染物排放与各行驶工况下的速度、加速度均密切相关,车辆在高速加速行驶状态下易产生高的排放速率。车速小于10 km/h时排放因子远大于车速较快时的排放因子,车辆在加速时的排放因子最大,减速时最小。车辆在30 km/h~50 km/h速度区间内等速行驶时,油耗与排放因子最为经济且环境友好。测试车辆排放的颗粒形态主要集中在累积模式,属于纳米或超细微粒。  相似文献   

12.
根据车辆类型及排放因子计算西安市机动车尾气污染物排放CO、碳氢化合物(HC)、氮氧化物(NOx)及颗粒物(PM)的特征。结果显示,机动车排放污染物中一氧化碳含量远大于其他三者。CO和HC主要来自客车,尤其是小型客车,而颗粒物主要由重型货车排放;超过80%的CO和HC来自汽油车,而超过90%的PM排放来自柴油车;国Ⅰ前汽车在西安市汽车保有量中仅占3.48%,而四种污染物排放量在的比例分别为33.55%、29.68%、11.92%和21.43%。为减少机动车尾气污染物的排放,建议淘汰国Ⅰ前车辆,对柴油车尾气加强处理。  相似文献   

13.
乌鲁木齐市城区机动车大气污染物排放特征   总被引:4,自引:1,他引:3  
对乌鲁木齐市城区车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行调研和测试,并根据IVE模型计算得到机动车污染物排放清单,获得分车型、燃料类型及启动/运行方式的机动车污染物排放分担率.结果表明:2011年乌鲁木齐市机动车CO、NO_x、HC和PM的排放量分别为20.22×104、2.60×104、1.84×104和0.44×10~4t·a~(-1),机动车污染物排放分担率差别显著,乘用车、公交车和重型货车是CO和HC主要排放源;重型货车和乘用车是NO_x的主要排放源;重型货车是PM的主要排放源.汽油车是CO和HC排放的主要来源,柴油车是NO_x和PM排放的主要来源,天然气车各类污染物排放量均较低.控制柴油重型货车是消减机动车污染物排放的重要方式.  相似文献   

14.
利用便携式尾气测量系统(PEMS)对一辆国Ⅵ重型柴油车在北京(低温)和厦门(常温)分别进行0、50%和90%负载的实际道路排放测试.结果表明,国Ⅵ重型柴油车CO2基于功率平均排放为685 g·kWh-1,行驶阶段CO2基于里程的排放因子平均为662.35 g·km-1.NOx排放比国Ⅵ标准限值低68.3%.NOx基于功率的排放因子为82.6 mg·kWh-1,较国V下降98.6%,行驶阶段NOx基于里程的排放因子较国V下降99%,国Ⅵ重型柴油车实际道路排放控制效果良好.研究发现,较高的NOx排放主要集中在急加速段,并在长下坡结束时,出现NOx排放峰值.此外,6次测试冷启动NOx排放占整个测试阶段总排放的23.5%~56.7%.CO2和NOx排放随速度增加呈下降趋势,50%负载和90%负载时NOx的排放因子接近10%负载的2倍.低温时CO2和NOx排放因子较常温时分别升高17.7%和4.5%,...  相似文献   

15.
以2010年为基准年,利用COPERTⅣ模型计算了佛山市机动车尾气PM10及PM2.5的排放因子和排放量,评估了交通源车型组成及国标分布特征对PM2.5分担率的影响,建立了5大类车型的PM2.5及PM10排放量比值关系。2010年佛山市机动车的PM2.5及PM10直接排放量分别为1 953.03 t/a及2 422.60 t/a;PM2.5排放量最高的2类车型为重型柴油车与摩托车,分担率分别为61.5%及19.3%;在所有机动车中国0车具有最高PM2.5分担率,高达47.5%;不同车型PM2.5/PM10排放量之比亦不同,依次为:轻型柴油车0.850>重型柴油车0.847>摩托车0.811>轻型汽油车0.574>重型汽油车0.477。柴油车与摩托车为削减PM2.5直接排放的主要控制对象,尤其应重点淘汰国0、国Ⅰ及国Ⅱ柴油类黄标车,综合考虑道路状况的前提下可实施限摩政策。  相似文献   

16.
天津市机动车尾气排放因子研究   总被引:5,自引:1,他引:4  
通过调查研究天津市机动车车型构成、保有量、车辆行驶状况、气象数据和油品等基础数据,利用COPERT IV模型计算了在国1、国2、国3、国4和国5排放标准下机动车尾气中CO、NO_x、VOC和PM_(2.5)的排放因子.应用车载测试系统在实际道路上对国4柴油货车的排放因子进行了测量,并将模型结果与实测结果进行了比较,研究表明,国4排放标准下,污染物排放实测数据普遍高于模型模拟数据.对于轻型载货柴油车而言,实际道路测量的CO、NO_x、VOC和PM_(2.5)的排放因子分别是模型模拟数据的2.5、4.3、1.9和1.2倍;对于中型载货柴油车而言,以上污染物的实测排放因子分别是模型的1.3、2.1、1.0和1.2倍;对于重型载货柴油车而言,以上污染物的实测排放因子分别是模型的1.7、1.9、1.1和1.2倍.  相似文献   

17.
重型柴油车PM2.5和碳氢化合物的排放特征   总被引:1,自引:0,他引:1  
采用车载排放试验对国Ⅱ、国Ⅲ、国Ⅳ重型柴油车尾气在实际道路排放的PM2.5和碳氢化合物进行样品采集,采用电感耦合等离子体质谱技术、离子色谱仪和碳质分析仪对PM2.5各组分进行测试分析,采用五气分析仪对HC进行在线分析.结果表明,重型柴油车PM2.5和HC的排放因子分别为(0.22±0.12) g/km和(0.57±0.45) g/km,且排放因子随机动车排放标准的提高呈明显下降趋势.EC和OC是机动车尾气PM2.5的主要组分,分别占总质量百分比的38.87%~42.87%和16.22%~19.96%;水溶性离子中含量较为丰富的组分主要是SO42-、NH4+和NO3-,分别占总PM2.5质量百分比的7.64%~8.85%、2.22%~3.97%、1.91%~2.73%;元素中含量较高的组分为S、Na、Ca、Fe、和Al;PM2.5和HC的排放因子随车速的增加均呈下降趋势.  相似文献   

18.
基于COPERT模型的重型柴油货车排放因子敏感性分析研究   总被引:1,自引:0,他引:1  
模拟分析了COPERTⅣ模型中不同污染物排放因子计算结果对主要输入参数的敏感性.以COPERTⅣ模型为平台,以重型柴油货车为研究对象,分别模拟了不同行驶速度、排放标准、燃料含硫率、累计行驶里程、车辆负载、道路类型、道路坡度、是否执行I/M制度等情景下的排放因子,对比分析了不同参数对CO、VOC、NOx、PM、SO2等污染物排放因子的影响,得出以下主要结论:0~45 km/h为速度变化的敏感范围,国2及国4排放阶段相较于前一阶段排放因子有较大幅度下降等.  相似文献   

19.
深圳市机动车PM_(2.5)排放因子隧道测试研究   总被引:1,自引:0,他引:1  
为深入了解深圳市机动车排放PM2.5化学特性,选取深圳具有代表性的城市隧道进行机动车排放因子测试。通过连续8 d的监测,获得隧道内PM2.5质量、EC、OC的浓度、交通参数、气象参数等实测数据。利用单程隧道活塞效应计算出隧道内机动车排放PM2.5质量、EC、OC的平均排放因子,分别为64.0,9.68,20.2 mg(/km.辆)。隧道内OC/EC的值在0.32~0.74之间,平均为0.52,表明深圳市机动车对PM2.5的排放,柴油车起主要作用。对塘朗山隧道与国内外其他隧道实验的测定结果进行比较,结果显示PM2.5质量的平均排放因子高低与机动车组中重型车所占比例大小规律一致,说明机动车组中重型车比例是城市控制机动车PM2.5排放的主要因素。利用线性回归分别计算重型车、轻型车对PM2.5质量、EC、OC的排放因子,经分析重型车为深圳市机动车尾气排放控制的重点,尤其是重型柴油车。  相似文献   

20.
应用车载式尾气排放测试设备对北京国Ⅲ、国Ⅳ排放标准的柴油公交车和国Ⅲ排放标准压缩天然气公交车在实际道路上的尾气CO2排放特征进行了实测研究,测试时间为30 787 s,行驶里程达到168.58 km,共获得30 787组有效数据,测试数据能够反映车辆在实际道路上的排放特征。3种类型车辆测试期间在实际道路上的CO2排放因子分别为(1.10±0.24)g/m、(0.99±0.23)g/m和(1.02±0.21)g/m。车辆的排放状况与车辆的行驶工况有密切关系,车速较低,加速度越大,CO2排放速率和排放因子越大,车辆在匀速且车速较快时排放速率和排放因子较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号