首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柴油车是机动车排放的大气颗粒物的主要来源,为研究沈阳市柴油车PM_(2.5)和PM_(10)的排放因子及其碳组分排放特征,采用检车线车载测试方法采集了15辆国三和国四排放标准的小型、中型、大型载客和轻型、中型、重型载货柴油车尾气样品,并对其中的碳组分进行化学分析.结果表明,国三柴油车PM_(2.5)和PM_(10)的排放因子分别为(0. 193±0. 092) g·km-1和(0. 338±0. 305) g·km-1,国四柴油车PM_(2.5)和PM_(10)的排放因子分别为(0. 085±0. 038) g·km-1和(0. 100±0. 042) g·km-1,随排放标准的提升PM_(2.5)和PM_(10)排放因子显著下降.同一排放标准下,排放因子随车型的增大而增大. TC为柴油车的主要组分,国四柴油车中TC的质量分数(23%~48%)明显低于国三柴油车(29%~70%).各车型柴油车元素碳(EC)的质量分数均大于有机碳(OC),OC/EC为0. 70±0. 29,且国四柴油车OC/EC值低于国三柴油车.因载客汽车总行驶里程明显高于载货汽车导致油耗较高,相同排放标准载客汽车OC和EC的质量分数高于载货汽车.国三、国四柴油车质量分数最高的碳组分均为EC2,可将EC2作为柴油车的标识组分.  相似文献   

2.
柴油车排放的细颗粒物是机动车PM2.5的主要来源,其组成复杂,对人体健康有较大危害。为研究成都地区国Ⅲ柴油车的PM2.5排放特征和碳质组分特征,采用便携式车载测试装置对成都地区重型柴油车(HD)、中型柴油车(MD)和轻型柴油车(LD)进行了尾气PM2.5采样,研究了PM2.5排放因子、表面形貌及碳质组分。结果表明:1)HD、MD和LD的PM2.5排放因子分别为0.12,0.04,0.03 g/km;2)颗粒物表面都深褐色或黑色,粒径主要分布在100~300 nm之间,以积聚模态为主;3)碳质组分是柴油车颗粒物的主要成分,其质量分数在68%~75%之间,HD、MD和LD的PM2.5中OC/EC分别为2.93、2.88和3.10,OC的主要成成分为OC1,EC的主要成分为EC1。  相似文献   

3.
基于重庆本地碳成分谱的PM2.5碳组分来源分析   总被引:13,自引:10,他引:3  
为了解重庆主城PM2.5中碳组分特征和来源,2012-05-02~2012-05-10日在商业区、工业区和居民区进行了PM2.5采样.利用TOR方法分析了8种碳组分,对3个不同功能区大气环境PM2.5以及燃煤尘、尾气尘(机动车尾气、船舶尾气、施工机械尾气)、生物质燃烧尘、餐饮油烟尘这6类源PM2.5中的8种碳组分进行了特征分析.在源的碳成分谱基础上,利用化学质量平衡(CMB)模型得到重庆本地PM2.5的碳来源指示组分,利用因子分析法解析出各类源对不同功能区内PM2.5碳组分的贡献率.结果表明,重庆地区燃煤尘、机动车尾气尘、船舶尾气尘、施工机械尾气尘、生物质燃烧尘、餐饮油烟尘的OC/EC值分别为6.3、3.0、1.9、1.4、12.7和31.3.EC2、EC3的高载荷指示柴油车尾气排放,OC2、OC3、OC4、OPC的高载荷指示燃煤排放,OC1、OC2、OC3、OC4、EC1指示汽油车尾气排放,OC3指示餐饮业排放,OPC指示生物质燃烧排放.商业区OC/PM2.5为17.4%,EC/PM2.5为6.9%,估算得到,二次有机碳(SOC)/OC为40.0%;工业区OC/PM2.5为15.5%,EC/PM2.5为6.6%,SOC/OC为37.4%;居民区OC/PM2.5为14.6%,EC/PM2.5为5.6%,SOC/OC为42.8%.工业区PM2.5中碳组分的主要来源为燃煤和汽油车尾气、柴油车尾气;商业区PM2.5中碳组分的主要来源为汽油车尾气、柴油车尾气和餐饮业油烟;居住区PM2.5中碳组分的主要来源为汽油车尾气、餐饮业油烟、柴油车尾气.  相似文献   

4.
重型柴油车PM2.5和碳氢化合物的排放特征   总被引:1,自引:0,他引:1  
采用车载排放试验对国Ⅱ、国Ⅲ、国Ⅳ重型柴油车尾气在实际道路排放的PM2.5和碳氢化合物进行样品采集,采用电感耦合等离子体质谱技术、离子色谱仪和碳质分析仪对PM2.5各组分进行测试分析,采用五气分析仪对HC进行在线分析.结果表明,重型柴油车PM2.5和HC的排放因子分别为(0.22±0.12) g/km和(0.57±0.45) g/km,且排放因子随机动车排放标准的提高呈明显下降趋势.EC和OC是机动车尾气PM2.5的主要组分,分别占总质量百分比的38.87%~42.87%和16.22%~19.96%;水溶性离子中含量较为丰富的组分主要是SO42-、NH4+和NO3-,分别占总PM2.5质量百分比的7.64%~8.85%、2.22%~3.97%、1.91%~2.73%;元素中含量较高的组分为S、Na、Ca、Fe、和Al;PM2.5和HC的排放因子随车速的增加均呈下降趋势.  相似文献   

5.
朔州市市区PM2.5中元素碳、有机碳的分布特征   总被引:3,自引:2,他引:1  
采集朔州市市区4个点位采暖季和非采暖季环境空气PM2.5样品,利用Elementar Analysensysteme Gmb H vario EL cube型元素分析仪测定其中元素碳(elemental carbon,EC)和有机碳(organic carbon,OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行分析.结果表明,朔州市市区非采暖季PM2.5中OC和EC的平均浓度为(14.3±2.7)μg·m-3和(10.3±3.1)μg·m-3,采暖季OC、EC平均浓度分别为(23.3±5.9)μg·m-3和(20.0±5.7)μg·m-3;4个点位OC和EC的浓度均表现为采暖季大于非采暖季,其中在采暖季,点位SW中OC和EC浓度分别为28.5μg·m-3和28.1μg·m-3,高于其它采样点,在非采暖季,点位PS中OC和EC的浓度分别为17.7μg·m-3和14.1μg·m-3高于其它采样点;采暖季和非采暖季PM2.5中OC/EC值均小于2,但OC和EC相关性不好(在采暖季和非采暖季的相关系数分别为0.66和0.52),说明PM2.5中碳气溶胶来源复杂.控制碳组分一次排放来源,如燃煤烟尘、生物质燃烧及机动车尾气排放,同时关注二次污染是控制朔州市PM2.5的关键.朔州市市区采暖季和非采暖季PM2.5中二次有机碳(secondary organic carbon,SOC)浓度分别为(6.44±2.77)μg·m-3和(4.11±1.92)μg·m-3.  相似文献   

6.
于鸣媛  王谦  付明亮  戈畅  谢锋  曹芳  章炎麟 《环境科学》2023,44(7):3771-3778
机动车尾气是大气碳质气溶胶的重要人为来源,其排放因子与稳定碳同位素组成是重要的基础数据.选取多辆不同类型在用机动车,进行多种工况、冷/热条件下启动的台架试验,收集各测试阶段尾气分析其碳质组分含量与稳定碳同位素比值,并探讨其影响因素.结果表明,总碳排放因子大小为:重型柴油车>轻型柴油车>轻型汽油车,轻型天然气车虽然在低速与中速阶段排放因子极低,但高速行驶阶段可达到重型柴油车的排放水平.各型车冷启动的排放因子均高于热启动,NEDC工况的排放因子整体低于WLTC工况,应与其测试车速有关.汽油车和天然气车各测试阶段排放有机碳(OC)均远高于元素碳(EC),柴油车OC与EC排放因子相近,各类车辆OC/EC都随测试车速的提高而上升.稳定碳同位素EC重于OC,同位素比值大小关系均呈现:汽油车<天然气车<轻型柴油车<重型柴油车,现有源解析的稳定碳同位素源谱较难反映汽油车与天然气车特征.在排放治理与源解析工作中,应注意替代燃料的使用与机动车老化过程所造成的排放因子与同位素特征值的变化影响.  相似文献   

7.
轻型汽油车尾气OC和EC排放因子实测研究   总被引:5,自引:4,他引:1  
黄成  胡磬遥  鲁君 《环境科学》2018,39(7):3110-3117
选取27辆国3~国5轻型汽油车采用实验室底盘测功机和全流稀释定容采样系统(CVS)开展了尾气颗粒物中有机碳(OC)和无机碳(EC)组分的排放因子实测,分析了启动条件、行驶工况和喷油方式对轻型汽油车OC和EC排放的影响.结果表明,国3~国5轻型汽油车OC平均排放因子分别为(2.09±1.03)、(1.59±0.78)和(0.75±0.31)mg·km-1,EC平均排放因子分别为(1.98±1.42)、(1.57±1.80)和(0.65±0.49)mg·km-1,二者均随排放标准的提升呈显著下降趋势,OC/EC值分别为1.54±0.92、1.53±0.91以及1.47±0.66.OC1、OC2以及EC1和EC2是轻型汽油车排放的最主要碳质组分,分别占15.0%、20.6%、22.2%和21.7%.冷启动条件下轻型汽油车OC和EC排放约为热启动的1.4和1.8倍;高速工况下轻型汽油车OC和EC排放因子约为城区工况的2倍和4倍;缸内直喷(GDI)发动机的OC排放因子与进气道喷射(PFI)发动机接近,但EC排放因子约是后者的1.7倍,随着我国轻型汽油车中GDI发动机日渐普及,其EC排放应当引起密切关注.  相似文献   

8.
深圳市机动车PM_(2.5)排放因子隧道测试研究   总被引:1,自引:0,他引:1  
为深入了解深圳市机动车排放PM2.5化学特性,选取深圳具有代表性的城市隧道进行机动车排放因子测试。通过连续8 d的监测,获得隧道内PM2.5质量、EC、OC的浓度、交通参数、气象参数等实测数据。利用单程隧道活塞效应计算出隧道内机动车排放PM2.5质量、EC、OC的平均排放因子,分别为64.0,9.68,20.2 mg(/km.辆)。隧道内OC/EC的值在0.32~0.74之间,平均为0.52,表明深圳市机动车对PM2.5的排放,柴油车起主要作用。对塘朗山隧道与国内外其他隧道实验的测定结果进行比较,结果显示PM2.5质量的平均排放因子高低与机动车组中重型车所占比例大小规律一致,说明机动车组中重型车比例是城市控制机动车PM2.5排放的主要因素。利用线性回归分别计算重型车、轻型车对PM2.5质量、EC、OC的排放因子,经分析重型车为深圳市机动车尾气排放控制的重点,尤其是重型柴油车。  相似文献   

9.
2014年7月采集鞍山市大气中PM2.5样品,采用IMPROVE-TOR方法准确测量了样品中的8个碳组分,研究了鞍山城区夏季PM2.5及其载带的碳组分的污染特征。鞍山市夏季PM2.5浓度为(53.4±18.0)μg/m3,有机碳(OC)、元素碳(EC)和总碳(TC)占PM2.5的比例分别为(11.89±3.86)%、(4.79±1.31)%和(16.68±5.02)%,表明碳是鞍山城区夏季PM2.5中的重要成分。PM2.5中OC、EC浓度显著相关,R=0.715;另外,全市OC/EC的平均值为2.49±0.43,所有监测点位OC/EC的平均值均2,表明PM2.5中二次有机碳(SOC)对OC有贡献,从而说明OC、EC的来源相同。8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC)的丰度研究显示,鞍山市城区夏季PM2.5中碳主要来源于机动车尾气尘、道路尘和燃煤尘。  相似文献   

10.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

11.
黄石市夏季昼间大气PM10与PM2.5中有机碳、元素碳污染特征   总被引:3,自引:0,他引:3  
2012年7月,对黄石市城区夏季昼间大气颗粒物PM10与PM2.5样品进行采集,并用热/光反射法(TOR)分析其中的有机碳(OC)、元素碳(EC).结果显示,新老城区PM10中OC平均含量分别为14.60μg·m-3和18.70μg·m-3,EC平均含量分别为4.70μg·m-3和11.02μg·m-3;PM2.5中OC平均含量分别为11.89μg·m-3和13.66μg·m-3,EC平均含量分别为2.28μg·m-3和4.96μg·m-3.研究结果表明,夏季昼间黄石市新老城区大气PM10与PM2.5中碳组分浓度变化趋势相同,且老城区大气PM10、PM2.5中的OC和EC含量普遍要比新城区高,且PM10中OC、EC在总碳(TC)的质量分数均高于在PM2.5中,说明黄石市老城区碳污染状况较新城区要严重,其夏季昼间大气粗颗粒物中碳的含量更高.通过对OC/EC及8个碳组分进行探讨,发现黄石市大气颗粒物中OC易形成二次污染,而EC排放以烟炱为主,夏季燃煤和机动车尾气是黄石碳污染的重要污染源,生物质燃烧也具有一定影响.  相似文献   

12.
万州城区夏季、冬季PM_(2.5)中有机碳和元素碳的浓度特征   总被引:5,自引:2,他引:3  
在位于三峡库区腹心的山地城市万州城区采集夏季和冬季PM2.5样品,采用热光反射法(Thermal Optical Reflection,TOR)测定了PM2.5中有机碳(OC)和元素碳(EC)的浓度,探讨了其污染特征及来源.结果发现,OC和EC在夏季的平均浓度分别为(7.09±1.86)μg·m-3和(3.49±0.64)μg·m-3;冬季分别为(16.82±6.87)μg·m-3和(6.21±2.06)μg·m-3,高于夏季,这可能与冬季当地居民生物质燃烧的贡献显著增加有关.冬季OC和EC显著线性相关(r=0.89),表明冬季两者的一次污染来源相近.冬季PM2.5中总碳(TC)和水溶性K+含量的相关性(r=0.88)高于夏季(r=0.69),表明冬季生物质燃烧对碳污染贡献显著.利用OC/EC比值法对二次有机碳(SOC)进行估算,SOC的浓度均值在夏季为(2.17±1.46)μg·m-3,占OC比例为28.18%±13.85%;冬季为(4.46±3.69)μg·m-3,占OC的23.13%±12.30%.通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放和生物质燃烧是万州城区碳组分的主要来源.  相似文献   

13.
我国工程机械排放控制起步较晚.为研究实际工况下工程机械的PM2.5排放特性及其碳质组分构成,采用便携式颗粒物稀释采样系统,对3台工程机械(2台挖掘机和1台装载机)在不同典型工况(行驶、作业和怠速)下的PM2.5及其碳质组分〔OC(有机碳)和EC(元素碳)〕的现场排放特征进行了测试.结果表明:沃尔沃挖掘机、山河智能挖掘机的PM2.5排放因子(基于燃油)分别为1.85~3.26和1.56~2.62 g/kg,厦工装载机的PM2.5排放因子为0.98~1.48 g/kg.不同工况对PM2.5排放因子影响较大,怠速工况下PM2.5排放因子是行驶工况下的1.49~1.76倍.工程机械排放的PM2.5中,碳质组分是最主要的成分,其质量分数高达71.0%~84.5%.其中,w(OC)为44.6%~72.0%,在怠速工况下最高;w(EC)则为8.6%~30.9%,在行驶工况下较高.测试工程机械的PM2.5排放水平较高,因此应尽快加强工程机械排放的污染防治.  相似文献   

14.
2014年1月-2014年12月期间,在大连市对PM2.5的质量浓度和含碳气溶胶进行了在线连续观测,获得了不同季节的含碳气溶胶的变化特征.观测结果显示:大连市PM2.5中有机碳(OC)和元素碳(EC)的年平均质量浓度分别为6.9 μg/m3和2.9 μg/m3,OC和EC浓度之和占PM2.5的18%,表明碳质气溶胶是大连市大气细粒子中的重要组分.OC和EC的比值表明机动车尾气、燃煤排放和船舶排放是大连市PM2.5中OC和EC的主要来源.重污染过程期间OC/EC的比值和PM2.5的变化趋势呈负相关关系可以作为判定外来污染输送的一个重要指标.  相似文献   

15.
忻州市环境空气PM10中有机碳和元素碳污染特征分析   总被引:4,自引:2,他引:2  
采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭示忻州市的碳组分污染特征.结果表明,忻州市PM10中OC和EC的平均质量浓度分别为(18.5±4.5)μg·m-3和(16.1±4.3)μg·m-3,采暖季和非采暖季TCA占PM10的比例分别为70.7%和43.8%;4个监测点位采暖季OC的质量浓度均高于非采暖季,XT、DC和KQ监测点采暖季EC的质量浓度高于非采暖季,SQ监测点则相反,采暖季燃煤是OC和EC的主要来源;监测点XT的OC质量浓度最高,为24.1μg·m-3,DC的EC质量浓度最高,为22.0μg·m-3,SQ的OC和EC质量浓度最低,分别为17.2μg·m-3和14.5μg·m-3,区域性污染特征存在差异;OC/EC均值小于2,一次污染严重;非采暖季OC与EC浓度相关性较好(R2=0.55),二者排放源单一,主要来源为机动车尾气排放,采暖季相关性不显著(R2=0.13),二者排放源复杂.忻州市主要通过控制燃煤、机动车尾气、生物质燃烧、工业源等的一次排放来减轻碳组分污染,进而提高环境空气质量.  相似文献   

16.
应用PART5模式计算机动车尾气管的颗粒物排放   总被引:12,自引:1,他引:11  
采用修正的PART5模式获得了北京市机动车尾气管的颗粒物(PM10和PM2.5)排放因子.在此基础上,计算了北京市1995和1998年机动车PM10和PM2.5的排放总量,并确定了分车型的排放分担率和颗粒物中各组分(铅、硫酸盐、可溶性有机物和残余碳等)的比例.结果表明,北京市机动车PM10和PM2.5的平均排放因子很高,其中汽油车、摩托车和重型柴油车的排放因子分别是美国同期水平的1.7~8.6倍、2.1~3.5倍和1.3~1.5倍.1995年北京市机动车尾气管排放的PM10和PM2.5分别为2445t和1890t,1998年则分别增至3359t和2694t,增加的幅度为37.4%和42.5%.  相似文献   

17.
南京北郊夏季大气颗粒物中有机碳和元素碳的污染特征   总被引:8,自引:4,他引:4  
段卿  安俊琳  王红磊  缪青 《环境科学》2014,35(7):2460-2467
采用DRI Model 2001A热/光碳分析仪对2013年5~7月期间南京北郊大气气溶胶9级惯性撞击式分级Andersen采样器膜采样样品中有机碳(OC)和元素碳(EC)的质量浓度进行了分析.结果表明,南京北郊夏季EC、OC的平均浓度,在PM2.1(空气动力学直径≤2.1μm)中分别为(2.6±1.1)μg·m-3、(13.0±5.2)μg·m-3,在PM9.0(空气动力学直径≤9.0μm)中,分别为(3.4±1.7)μg·m-3、(20.3±7.3)μg·m-3.EC主要富集在超细颗粒物中,OC主要存在于细颗粒物中,EC的PM1.1/PM9.0比值和OC的PM2.1/PM9.0比值分别为0.62和0.64.EC和OC浓度的平均最高值都出现在≤0.43μm粒径段中,分别占PM9.0中的总元素碳的33.4%和总有机碳的21.1%.南京北郊夏季PM1.1、PM2.1和PM9.0中EC、OC的相关性较好,说明存在共同的一次污染源.通过OC/EC特征物比值的方法得到南京夏季碳质颗粒物的主要来源有机动车尾气排放、燃煤排放和地面扬尘排放.  相似文献   

18.
从济南市机动车年检线上利用稀释通道方法采集了小型汽油车、中型汽油车、中型柴油车和大型柴油车4类机动车排气载带PM_(2.5),分析测量了样品中水溶性离子、金属元素、有机C(OC)和元素C(EC)的含量,明确了济南市机动车排气的化学组分特征,得到了济南市机动车排气污染现状以及排放特征.计算了4类机动车排气载带颗粒物的OC/EC值,小型汽油车、中型汽油车、中型柴油车和大型柴油车排气载带颗粒物中OC/EC值分别为15.79、4.34、1.93和0.39,其中小型汽油车、中型汽油车的OC/EC值均大于2,表明汽油车的尾气大于柴油车的尾气污染.而小型汽油车OC/EC值高达15.79,说明小型汽油车尾气中存在严重的二次污染.金属元素特征分析表明Ti、Mn、Fe、Al在济南市机动车尾气颗粒物PM_(2.5)中含量较高,尤其是Mn和Ti,因此,这4种金属元素可作为济南市机动车尾气源的标志元素.PMF模型解析表明,机动车排气源对济南市环境空气PM_(2.5)的贡献率为17.5%,由此可以通过控制济南市小、中型汽油机动车数量、改善油品和改善机动车排气系统来降低对PM_(2.5)的贡献率,从而减少市区空气中PM_(2.5)的浓度.  相似文献   

19.
民用燃煤排放分级颗粒物中碳组分排放因子   总被引:3,自引:2,他引:1  
中国是全球碳质气溶胶最重要的贡献者之一,民用燃煤排放占有很大的比重.排放因子的不确定性直接影响碳气溶胶排放清单的准确性.本研究基于室内模拟燃烧实验和稀释通道采样系统,采用FA-3型9级撞击采样器采集了3种蜂窝煤(考虑明烧和闷烧)和包括烟煤与褐煤在内的4种块煤燃烧排放的九级粒径颗粒物,采用热光法分析了不同粒径颗粒物中有机碳(OC)和元素碳(EC)的含量,计算得到排放因子.结果表明:(1)对于蜂窝煤的明烧与闷烧,PM2.1中OC排放因子分别为0.07g·kg~(-1)和0.10 g·kg~(-1),EC的排放因子为0.002 g·kg~(-1)和0.001 g·kg~(-1);闷烧排放的有机碳颗粒物高于明烧;元素碳排放因子低于明烧.块煤排放PM2.1中OC与EC排放因子分别是1.4 g·kg~(-1)和0.02 g·kg~(-1),高出蜂窝煤排放一个数量级.(2)粒径分析结果表明,民用煤燃烧排放的颗粒物及其载带的碳组分集中在细颗粒物上,碳组分的质量中值粒径均小于2.5μm,总碳(OC+EC)的排放因子粒径分布表明蜂窝煤燃烧排放的碳组分富集于≤0.43μm粒径段,块煤富集于0.43~0.65μm粒径段.  相似文献   

20.
稻草烟尘中有机碳/元素碳及水溶性离子的组成   总被引:5,自引:3,他引:2  
选取我国6种稻草,通过自制的生物质焚烧装置模拟秸秆露天焚烧.采用Model 2001A热/光分析仪和ISC 2000/ISC3000离子色谱仪测定了阴燃、明燃烟尘中有机碳(OC)、元素碳(EC)与水溶性离子的含量.结果表明,明燃条件下稻草中OC排放因子(EFOC)均值为(6.37±1.86)g·kg-1,EC排放因子(EFEC)均值为(1.07±0.30)g·kg-1;阴燃条件下稻草中EFOC均值为(37.63±6.26)g·kg-1,EFEC均值为(4.98±1.42)g·kg-1.同一品种稻草燃烧排放出的PM、OC与EC变化趋势一致.明燃时稻草中的OC/EC均值为5.96,阴燃时比值均值为7.80,OC/PM几乎不受燃烧状态的影响,阴燃、明燃时EC/PM分别在0.06~0.08、0.08~0.11范围内,通过EC/PM比值可以初步判断燃烧状态的趋势,两种燃烧方式中排放的OC、EC相关性达到0.97,在0.01水平上相关性显著.阴离子中,Cl-含量最高,明燃时稻草中Cl-的排放因子均值为(0.246±0.150)g·kg-1,阴燃下为(0.301±0.274)g·kg-1,明燃时K+排放因子均值为(0.118±0.051)g·kg-1,阴燃时排放因子远低于明燃排放量,均值为(0.053±0.031)g·kg-1.水溶性Na+在阴燃条件下的排放因子均高于明燃状态下的排放.明燃条件下水溶性离子间的相关性比阴燃时显著.通过OC/EC比值可以将稻草与石化燃料及其他一些生物质燃烧区分开,而水溶性离子中的K+/Na+、Cl-/Na+比值也可以将稻草与一些树木类焚烧区别开来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号