首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用不同级数的 FA- 型、FA- 型和由 FA- 型 6级简化为 2级型的 3种类型的 ANDERSEN生物粒子采样器 ,在室内外对空气微生物粒子浓度、粒子大小分布的采样效果进行了比较 ,同时对 FA- 型生物粒子采样器的性能进行了检测。结果表明 ,5台 FA- 型生物粒子采样器的第 1级、第 2级采集的空气微生物粒子数和所占粒数百分比均无明显差别 ;逃失率为 3.3%。FA- 型和 FA- 型采样器对空气微生物粒子浓度的采样效果也没有明显差别 ;由 FA- 型 6级简化为 2级型的采样器与 FA- 型采样器对空气微生物粒子浓度和粒子大小分布的采样效果有明显差别 ,FA- 型采样器不宜简化为 2级型采样器使用  相似文献   

2.
北京市传染病院空气微生物粒子浓度及浓度分布   总被引:4,自引:0,他引:4  
用ANDERSEN生物粒子采样器观测了北京市传染病院病区室内外空气微生物粒子浓度及浓度分布。结果表明,北京市传染病院病区空气微生物粒子浓度室内高于室外,室内清洁高于半污染区和污染区,室内春,秋季高于夏,冬季,室外秋,冬季高于春,夏季。病区室内空气微生物粒子逍度分布的高峰在第3级(3.3-4.7μm)和第5级(1.1-2.1μm)病区室外空气微生物粒子浓度分布的高峰在第1级(>7.0μm)和第5级。  相似文献   

3.
采样时间对空气微生物采样效果的影响   总被引:3,自引:0,他引:3  
用ANDERSEN生物粒子采样器和微孔滤膜空气微生物采样器,在室内进行了不同采样时间对空气微生物采样效果的研究。结果表明,这两种采样器采集的空气微生物粒子浓度随采样时间增加而减少,呈明显的负相关关系,相关系数分别为:-0.898和-0.911,P值均小于0.05。ANDERSEN采样器采样时间〈7min和微孔滤膜采样器采样时间〈3min时,对采集的空气微生物粒子浓度没有明显影响。采样时间对采集的空  相似文献   

4.
用 ANDERSEN生物粒子采样器观测了北京市传染病院病区室内外空气微生物粒子浓度及浓度分布。结果表明 ,北京市传染病院病区空气微生物粒子浓度室内高于室外 ,室内清洁区高于半污染区和污染区 ,室内春、秋季高于夏、冬季 ,室外秋、冬季高于春、夏季。病区室内空气微生物粒子浓度分布的高峰在第 3级 (3.3~ 4 .7μm)和第 5级 (1.1~ 2 .1μm) ,病区室外空气微生物粒子浓度分布的高峰在第1级 (>7.0μm)和第 5级  相似文献   

5.
将带有绿色荧光蛋白的复制缺陷型重组腺病毒,作为模拟病毒建立一种检测病毒侵袭力的方法.在钢化玻璃箱中通过TK-3型微生物气溶胶发生器将腺病毒形成气溶胶,用FA-1型多级撞击式空气微生物采样器进行气溶胶采样,对采样样品分别进行实时荧光定量PCR检测和表达了绿色荧光蛋白的PK15活细胞定时检测.实时荧光定量PCR检测可测定病毒在大气中存在的相对基因拷贝数,通过在荧光显微镜下计数带绿色荧光的PK15细胞数可直观检测病毒的感染力及活力.结果表明,重组腺病毒气溶胶主要分布在采样器第五级,腺病毒气溶胶与病毒粒子相比较大.  相似文献   

6.
北京雾霾天大气颗粒物中微生物气溶胶的浓度及粒谱特征   总被引:3,自引:2,他引:1  
于2013年1月8日~2013年2月4日雾霾频繁暴发期间,使用定量空气微生物采样器和气溶胶粒谱测试仪测试并比较了雾霾天和之后的清朗天气下细菌、真菌气溶胶浓度变化、粒谱分布及不同粒径大小颗粒物的数量浓度差异和粒谱分布特征.结果表明,采样周期内真菌气溶胶小于5μm的粒子(可吸入肺粒子)所占百分比显著高于细菌气溶胶小于5μm的粒子百分比.雾霾过后的晴朗天气下细菌、真菌气溶胶浓度高于雾霾天气时的浓度,而颗粒物浓度则相反.无论雾霾天或晴朗天微生物气溶胶的粒谱分布无显著差别,空气中的颗粒物以PM1.0占绝大多数.  相似文献   

7.
文摘与国内外动态空气微生物采样方法的比较对ANDERSEN型、THK-201型空气微生物采样器和平皿沉降法的采样方法进行了对比实验。对3种方法测定大气细菌粒子、真菌粒子的结果进行了比较,列出了测定结果的相关性,用直线回归分析法得出大气细菌粒子浓度与沉...  相似文献   

8.
沈阳市室内空气真菌粒子的研究   总被引:6,自引:0,他引:6  
用A·S生物粒子采样器在沈阳市设点采样并对室内真菌粒子进行观测,知道其浓度为1167个/m3,粒数中值直径为3.4μm,沉降量为1.5个/皿·5min;其浓度分布和粒度分布均为对数正态分布;其浓度和沉降量均与室内人数呈明显的正相关关系。  相似文献   

9.
大气细菌粒子与飘尘粒子的关系   总被引:3,自引:0,他引:3  
本研究用ANDERSEN生物粒子采样器和光散射气溶胶粒子计数器,在北京西单和丰台对大气细菌粒子与飘尘粒子的浓度和浓度分布及两者之间的关系进行了观测。结果表明,大气细菌粒子的日平均浓度为2.882个/l,浓度分布是从第6级至第1级逐级增大;飘尘粒子的平均浓度为149464个/l,浓度分布是从0.5~32μm依次减小:大气细菌粒子浓度与≥2.0μm的飘尘粒子有非常明显的正相关关系。  相似文献   

10.
室内外环境中空气细菌的粒子大小分布   总被引:2,自引:0,他引:2  
空气微生物污染的危害与其粒子大小分布密切相关,我们使用Andersen空气微生物采样器,对医院病房、实验室及动物房等处的室内环境,进行了空气细菌粒子大小分布的测定。结果表明,无论是空气细菌粒子大小的分布范围,中值直径,季节分布,还是革兰氏阳性球菌粒子大小的分布,室内空气中的细菌粒子都要比室外空气中的小并对其产生原因及其在疾病传播上的意义,做了初步的讨论。  相似文献   

11.
京、津地区大气微生物的浓度   总被引:13,自引:3,他引:10  
本文用仿制美国的ANDERSEN生物粒子采样器测定了北京两单、丰台和天津塘沽海滨三个地点的大气细菌和真菌浓度,结果表明,年平均空气细菌浓度北京西单为3.02个/L、丰台为2.56个/L、天津塘沽海演为1.38个/L,丰台真菌为1.20个/L,在一天内,大气细菌浓度分布明显出现7点、22点二个高峰时和13点、夜间1点二个低峰时,由ANDERSEN采样分为六级的大气细菌浓度亦有同样的目变化规律。  相似文献   

12.
空气微生物采样方法的比较   总被引:8,自引:0,他引:8       下载免费PDF全文
对3种空气微生物采样方法进行了比较。结果表明,在室外自然条件下,大气细菌粒子的沉降量与大气细菌粒子的浓度、大气真菌粒子的沉降量与大气真菌粒子的浓度均呈显著的正相关关系。对大气细菌粒子,用平皿沉降法分别与A·S采样器法、THK-201采样器法测定的结果相比,有非常显著的差异。平皿沉降法测定结果比后二者方法高出2.9倍和4.0倍;A·S采样器和THK-201采样器测定结果之间没有显著性差异。对大气真菌粒子,A·S采样器法和平皿沉降法与THK-201采样器法均有非常显著性差异;平皿沉降法与A·S采样器法测定结果之间没有显著性差异。进一步用直线回归分析的方法,得出了大气细菌粒子浓度与大气细菌粒子沉降量及大气真菌粒子浓度与大气真菌粒子沉降量之间的关系式。  相似文献   

13.
北京市居家空气微生物粒径及分布特征研究   总被引:4,自引:3,他引:1  
室内外空气微生物对人们健康的危害不仅与微生物的种类和浓度有关,而且还与微生物粒子的大小及粒径分布特征密切相关,并且不同粒径的空气微生物对人们健康影响的作用机制不同.在北京市不同方向选取31户有1~10岁儿童的家庭进行空气微生物取样,系统研究了室内家庭空气微生物粒径及分布特征.结果表明,室内空气细菌和真菌粒径分布特征不随家庭环境、季节特征、儿童性别、房屋结构的变化而变化,但空气细菌和真菌的粒径分布特征不同.总体上空气细菌和真菌粒径均呈对数正态分布,但空气细菌粒子百分比从Ⅰ级(>8.2μm)到Ⅴ级(1.0~2.0μm)逐渐增加,Ⅵ级(<1.0μm)细菌粒子百分比急剧下降,最高值出现在Ⅴ级,而空气真菌粒径百分比从Ⅰ级~Ⅳ级(2.0~3.5μm)逐渐增加,而后从Ⅳ级~Ⅵ级真菌粒径百分比急剧下降,最高值出现在Ⅳ级.不同优势真菌属的粒径分布也不相同,枝孢属、青霉属和曲霉属呈对数正态分布,最高值出现在Ⅳ级,而链格孢属为偏态分布,最高值出现在Ⅱ级(5.0~10.4μm).室内空气细菌的中值直径明显大于空气真菌,1 a中空气细菌和真菌春、夏、秋季的粒径明显大于冬季.  相似文献   

14.
自然通风对办公室内气溶胶的影响   总被引:2,自引:0,他引:2  
办公室间歇开窗自然通风可降低空内颗粒物和微生物的浓度,用TSI公司的气溶胶自动分析仪和FA-1型空气微生物采样器对样品测定结果表明,上午9:00室外大气颗粒物浓度高于室内,不宜开窗;10:30左右,室内颗粒物浓度增高,开窗自然通风效果好。  相似文献   

15.
2005年4月~2006年10月期间,利用Andersen六级空气生物采样器分别在北京、兴隆和香河3地区不同的季节进行外场采样观测,研究了大城市及其周边地区近地面层大气中真菌气溶胶菌群种类与浓度,粒度的季节变化规律及其分布特征.研究发现,3地区大气中真菌气溶胶的生物多样性变化明显,其优势菌群类型的季节变化显著;3地区大气真菌气溶胶数浓度的季节变化规律各不相同;北京市大气中真菌气溶胶数浓度的日变化显著,但未发现固定模式.  相似文献   

16.
城市污水处理厂生成的微生物气溶胶的污染特性   总被引:4,自引:2,他引:2  
为探明城市污水厂生成的微生物气溶胶的污染特性,于2011年6~7月利用Andersen六级撞击式采样器对西安市第三污水处理厂不同污水处理单元的微生物气溶胶进行现场采样,利用平皿培养和菌落计数法检测分析了细菌、真菌和放线菌这3类微生物气溶胶的浓度、粒径分布和中值直径.结果表明,污水处理厂污泥脱水车间的细菌和放线菌气溶胶浓度最高,分别为7 866 CFU.m-3±960 CFU.m-3和2 139 CFU.m-3±227 CFU.m-3,而真菌气溶胶浓度最高出现在氧化沟,为2 156 CFU.m-3±119 CFU.m-3.细菌、真菌和放线菌气溶胶粒径分布均呈偏态型,其中细菌和真菌的粒径分布峰值出现在2.1~3.3μm范围,而放线菌气溶胶粒径分布峰值出现在1.1~2.1μm范围.总体上,污水厂中细菌气溶胶中值直径>真菌气溶胶中值直径>放线菌气溶胶中值直径.另外,微生物气溶胶的空间变化特征表现为粒径大的微生物气溶胶浓度减少率大.3类微生物气溶胶浓度减少率的变化程度从大到小依次为细菌>真菌>放线菌.  相似文献   

17.
南京北郊大气颗粒物的粒径分布及其影响因素分析   总被引:3,自引:3,他引:0  
在南京北郊使用FA-3型9级采样器对2014年1~11月颗粒物的粒径分布进行了采样分析.首先将FA-3与中流量分级采样器(KC-120H)和环境保护局在线监测仪器的同期监测结果进行对比,数据相关系数均在0.95以上,对细粒子FA-3分别偏低13.9%和16.6%,而对PM_(10)偏高15.2%和13.3%,但采样偏差在大气采样可接受范围之内,说明其可以对大气颗粒物进行准确分级和采样.南京北郊颗粒物污染严重,PM_(1.1),PM_(2.1)和PM_(10)的年平均浓度分别为(65.6±37.6)、(91.0±54.7)和(168.0±87.0)μg·m-3,污染以细粒子为主,且大部分在1.1μm以下;颗粒物粒径呈双峰分布,峰值位于0.43~0.65μm和9~10μm粒径段;中值粒径为1.83μm,为积聚模态污染.颗粒物粒径分布在冬季细粒径段较高,春季粗粒径段较高,夏季细粒径段降低并不明显,粗粒径段明显低于其他季节;颗粒物浓度的昼夜变化在粗粒径段差异很小,在细粒径段基本表现出夜晚大于白天的特征.除了夏季,降水对各个粒径范围的颗粒物都有清除作用,且在细粒径段表现得更为明显;霾发生时随着霾等级的加重,0.43~2.1μm粒径段颗粒物浓度逐渐增加,该粒径段颗粒物质量浓度与能见度呈显著负相关.以相对湿度70%为界,颗粒物粒径分布发生了明显变化,湿度大于70%后,小于0.43μm粒径段颗粒物质量浓度显著降低,而0.43~2.1μm粒径段明显上升,颗粒物的吸湿增长应是主要原因.南京北郊的气团来源可以分为四类,其中西北方向快速输送的气团最为洁净,细粒径颗粒物浓度明显低于其它方向;本地和周边近距离输送的气团污染最重,粗细粒径颗粒物浓度都较高,其传输距离短,风速小,发生污染的概率最大,达到73.9%,对南京市的空气污染贡献较大.  相似文献   

18.
X592 200400914 城区大气颗粒物中有机氯农药的含量与分布/吴水平(北京大学城市与环境学系地表过程分析与模拟教育部重点实验室)…∥环境科学研究/中国环科院.-2003,16(4).-36-39 环图X-6 采用FA-3型气溶胶粒度分布采样器采样, 对北京和天津2个样点夏季大气中不同粒径颗粒  相似文献   

19.
为调查南京市学校教室内空气微生物污染状况,本研究各选一所幼儿园、小学、初中和大学,每所学校分别随机选取10间教室,采用六级安德森采样器进行空气微生物采样.研究发现,在南京地区所调研的这4所不同类型的学校中,幼儿园室内空气微生物浓度最高,细菌和真菌浓度均值分别为605CFU/m3和648CFU/m3,均显著高于其余3所学校.室内细菌和真菌粒径分布趋同,峰值均出现在Ⅴ级(1.1~2.1μm).仅在大学教室内,发现环境参数与空气微生物浓度存在显著相关性.幼儿园教室内学生每天吸入的细菌和真菌剂量分别为150.2CFU/kg和160.9CFU/kg,均显著高于其他学校学生.  相似文献   

20.
昆明市空气微生物污染调查   总被引:1,自引:0,他引:1  
包括细菌、真菌在内的生物性危害依然是对人类健康的严重危害。1994年秋季在昆明的调查表明,室内外空气中细菌粒子浓度均明显高于真菌粒子,室外空气中的细菌粒子浓度明显高于室内,真菌粒子则室内外无明显差别;室内外空气细菌粒子浓度和真菌粒子浓度呈显著的正相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号