首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
空气细菌真菌污染的分级评价构建方法   总被引:2,自引:0,他引:2  
针对空气细菌真菌污染评价存在的不足,搜集整理现有研究文献中对室内外空气细菌和真菌的现场实测数据,利用拟合优度χ~2检验法证明了在显著性水平α为0.05时,室内外空气细菌和真菌分别采用撞击法和沉降法的8组浓度数据均服从正态分布,并结合正态分布的3σ原则和现行评价标准,给出了可用于空气细菌真菌分级评价的浓度建议区间,研究成果可为将来制定空气细菌真菌污染的评价标准提供参考.  相似文献   

2.
室内外空气真菌污染状况初探   总被引:4,自引:0,他引:4  
用Andersen生物粒子采样器和平皿沉降法分别观测了室内和室外空气真菌粒子浓度,粒数中值直径和沉降量。结果表明,室外空气真菌粒子浓度高于室内空气真菌粒子浓度,室外空气真菌粒数中值直径大于室内空气真菌数中值直径,室外空气真菌粒子沉降量大于室内空气真菌粒子沉降量。  相似文献   

3.
北京市居家空气微生物粒径及分布特征研究   总被引:4,自引:3,他引:1  
室内外空气微生物对人们健康的危害不仅与微生物的种类和浓度有关,而且还与微生物粒子的大小及粒径分布特征密切相关,并且不同粒径的空气微生物对人们健康影响的作用机制不同.在北京市不同方向选取31户有1~10岁儿童的家庭进行空气微生物取样,系统研究了室内家庭空气微生物粒径及分布特征.结果表明,室内空气细菌和真菌粒径分布特征不随家庭环境、季节特征、儿童性别、房屋结构的变化而变化,但空气细菌和真菌的粒径分布特征不同.总体上空气细菌和真菌粒径均呈对数正态分布,但空气细菌粒子百分比从Ⅰ级(>8.2μm)到Ⅴ级(1.0~2.0μm)逐渐增加,Ⅵ级(<1.0μm)细菌粒子百分比急剧下降,最高值出现在Ⅴ级,而空气真菌粒径百分比从Ⅰ级~Ⅳ级(2.0~3.5μm)逐渐增加,而后从Ⅳ级~Ⅵ级真菌粒径百分比急剧下降,最高值出现在Ⅳ级.不同优势真菌属的粒径分布也不相同,枝孢属、青霉属和曲霉属呈对数正态分布,最高值出现在Ⅳ级,而链格孢属为偏态分布,最高值出现在Ⅱ级(5.0~10.4μm).室内空气细菌的中值直径明显大于空气真菌,1 a中空气细菌和真菌春、夏、秋季的粒径明显大于冬季.  相似文献   

4.
北京雾霾天大气颗粒物中微生物气溶胶的浓度及粒谱特征   总被引:3,自引:2,他引:1  
于2013年1月8日~2013年2月4日雾霾频繁暴发期间,使用定量空气微生物采样器和气溶胶粒谱测试仪测试并比较了雾霾天和之后的清朗天气下细菌、真菌气溶胶浓度变化、粒谱分布及不同粒径大小颗粒物的数量浓度差异和粒谱分布特征.结果表明,采样周期内真菌气溶胶小于5μm的粒子(可吸入肺粒子)所占百分比显著高于细菌气溶胶小于5μm的粒子百分比.雾霾过后的晴朗天气下细菌、真菌气溶胶浓度高于雾霾天气时的浓度,而颗粒物浓度则相反.无论雾霾天或晴朗天微生物气溶胶的粒谱分布无显著差别,空气中的颗粒物以PM1.0占绝大多数.  相似文献   

5.
北京市传染病院空气微生物粒子浓度及浓度分布   总被引:4,自引:0,他引:4  
用ANDERSEN生物粒子采样器观测了北京市传染病院病区室内外空气微生物粒子浓度及浓度分布。结果表明,北京市传染病院病区空气微生物粒子浓度室内高于室外,室内清洁高于半污染区和污染区,室内春,秋季高于夏,冬季,室外秋,冬季高于春,夏季。病区室内空气微生物粒子逍度分布的高峰在第3级(3.3-4.7μm)和第5级(1.1-2.1μm)病区室外空气微生物粒子浓度分布的高峰在第1级(>7.0μm)和第5级。  相似文献   

6.
北京市居家空气微生物污染特征   总被引:7,自引:1,他引:6  
在北京市选取31户有1岁至10岁儿童的家庭进行空气微生物取样,系统研究了室内家庭空气微生物污染特征.结果表明,北京市居家环境空气微生物总浓度变化范围为269~13066 CFU·m-3,均值为2658 CFU· m-3,空气细菌浓度变化范围为47 ~ 12341 CFU·m-3,均值为1821 CFU·m-3,空气真菌浓度变化范围为62~3498 CFU·m-3,均值为837 CFU·m-3.空气细菌和真菌浓度百分比分别为61.0%和39.0%,细菌浓度明显高于真菌浓度.居家环境优势细菌属依次为微球菌属(Micrococcus)、芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)和库克菌属(Kocuria),4属细菌百分比约占63.1% ~70.9%,优势真菌属为青霉属(Penicillium)、枝孢属(Cladosporium)、曲霉属(Aspergillus)、链格孢属(Alternaria)和茎点霉属(Phoma),分别约占总数的36.0%、17.8%、9.3%、5.3%和3.6%.文中最后针对北京市居家环境空气微生物污染的现状及其来源,从宠物饲养、空调清理、室内外优良环境的保持及垃圾处理、室内花卉种植等方面提出了治理建议.  相似文献   

7.
用 ANDERSEN生物粒子采样器观测了北京市传染病院病区室内外空气微生物粒子浓度及浓度分布。结果表明 ,北京市传染病院病区空气微生物粒子浓度室内高于室外 ,室内清洁区高于半污染区和污染区 ,室内春、秋季高于夏、冬季 ,室外秋、冬季高于春、夏季。病区室内空气微生物粒子浓度分布的高峰在第 3级 (3.3~ 4 .7μm)和第 5级 (1.1~ 2 .1μm) ,病区室外空气微生物粒子浓度分布的高峰在第1级 (>7.0μm)和第 5级  相似文献   

8.
空气微生物采样方法的比较   总被引:8,自引:0,他引:8       下载免费PDF全文
对3种空气微生物采样方法进行了比较。结果表明,在室外自然条件下,大气细菌粒子的沉降量与大气细菌粒子的浓度、大气真菌粒子的沉降量与大气真菌粒子的浓度均呈显著的正相关关系。对大气细菌粒子,用平皿沉降法分别与A·S采样器法、THK-201采样器法测定的结果相比,有非常显著的差异。平皿沉降法测定结果比后二者方法高出2.9倍和4.0倍;A·S采样器和THK-201采样器测定结果之间没有显著性差异。对大气真菌粒子,A·S采样器法和平皿沉降法与THK-201采样器法均有非常显著性差异;平皿沉降法与A·S采样器法测定结果之间没有显著性差异。进一步用直线回归分析的方法,得出了大气细菌粒子浓度与大气细菌粒子沉降量及大气真菌粒子浓度与大气真菌粒子沉降量之间的关系式。  相似文献   

9.
在南方典型旅游城市杭州选取了4个样点进行了空气微生物取样工作.系统研究了杭州市室外空气微生物粒径分布特征.结果表明,不同样点空气细菌粒子百分比从Ⅰ级到Ⅵ级逐渐减少,总体呈偏态分布.交通干线,文教区,商业区和旅游风景区细菌粒子百分比最高值均出现在Ⅰ级,分别占29.1%,31.8%,33.5%和25.4%,最低值均出现在Ⅵ级,分别占11.7%,11.2%,6.5%和11.1%.不同样点空气真菌主要分布在Ⅲ级、Ⅳ级和Ⅴ级,总体呈对数正态分布,真菌百分比最高值均出现在Ⅳ级,分别占30.3%,30.2%,31.7%和28.3%,最低值出现在Ⅵ级,分别占5.2%,5.1%,3.3%和4.5%.青霉属,链格孢属,曲霉属和枝孢属优势真菌粒径均呈对数正态分布特征,但取样器各级真菌百分比各不相同.此外,空气细菌中值直径显著大于空气真菌,商业区空气细菌中值直径显著大于其他3个样点,而文教区真菌中值直径显著大于其他3个样点.研究结果进一步说明了城市室内外空气微生物粒径分布特征的不同,为室内外空气微生物污染的预防和控制提供了科学依据.  相似文献   

10.
文摘与国内外动态空气微生物采样方法的比较对ANDERSEN型、THK-201型空气微生物采样器和平皿沉降法的采样方法进行了对比实验。对3种方法测定大气细菌粒子、真菌粒子的结果进行了比较,列出了测定结果的相关性,用直线回归分析法得出大气细菌粒子浓度与沉...  相似文献   

11.
空气微生物粒子沉降量指示兰州空气质量   总被引:3,自引:0,他引:3  
用平皿沉降法在兰州市区设立的6个点共10次测定空气中细菌和真菌粒子沉降量。结果表明兰州所测空气细菌、真菌、微生物总量及真菌/总菌百分比分别为18785.4、458.5、19243.9CFμ/m3及2.4。细菌合量明显比以往的增多,结果意味着兰州空气质量欠佳并正在趋于变化,必须采取果断措施改变这一状态。  相似文献   

12.
用不同级数的FA-I型、FA-Ⅱ型和由FA-I型6级简化为2级型的3种类型的ANDERSEN生物粒子采样器,在室内外对空气微生物粒子浓度、粒子大小分布的采样效果进行了比较,同时对FA-Ⅱ型生物粒子采样器的性能进行了检测。结果表明,5台FA-I型生物粒子采样器的第1级、第2级采集的空气微生物粒子数和所占粒数百分比均无明显差别;逃失率为3.3%。FA-I型和FA-I型采样器对空气微生物粒子浓度的采样效果也没有明显差别;由FA-I型6级简化为2级型的采样器与FA-I型采样器对空气微生物粒子浓度和粒子大小分布的采样效果有明显差别,FA-I型采样器不宜简化为2级型采样器使用。  相似文献   

13.
梅雨期大学宿舍室内生物气溶胶浓度及粒径分布   总被引:1,自引:1,他引:0  
大学宿舍室内生物气溶胶可通过空气传播,可能会危害学生身体健康.本研究调查了梅雨期大学宿舍室内生物气溶胶浓度和粒径分布特点,对其同空气颗粒物浓度、环境温度和湿度的Spearman相关性进行了研究,分析了学生活动对宿舍室内气溶胶的影响.结果表明,学生宿舍室内的细菌和真菌气溶胶平均浓度分别为(2 133±1 617)CFU·m~(-3)和(3 111±2 202)CFU·m~(-3),真菌气溶胶的浓度明显高于细菌.学生宿舍室内的PM1、PM_(2.5)、PM10与细菌气溶胶浓度呈负相关,与真菌气溶胶浓度呈显著负相关;PM_(2.5)与可吸入细菌气溶胶呈正相关,PM_(10)与可吸入真菌气溶胶呈正相关;环境温度与细菌和真菌气溶胶浓度呈正相关,环境相对湿度与细菌和真菌气溶胶浓度呈负相关.在下午,宿舍室内真菌气溶胶浓度显著增加,上午和下午生物气溶胶的粒径分布有差异.本研究结果将为评价高校学生宿舍室内空气质量提供基础数据.  相似文献   

14.
青岛市不同下垫面微生物气溶胶分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
分别在青岛市市区街道、海滨区域、饮用水水源地、城市垃圾填埋场和人工湿地污水处理厂设置监测点,分析比较不同下垫面空气细菌和真菌浓度、日变化和粒径分布. 结果表明:5个下垫面空气细菌浓度依次为城市垃圾填埋场>市区街道>饮用水水源地>海滨区域>人工湿地污水处理厂,真菌浓度依次为城市垃圾填埋场>人工湿地污水处理厂>饮用水水源地>市区街道>海滨区域,其中城市垃圾填埋场空气细菌和真菌浓度最高,分别为(613.1±68.9)、(1300.4±74.3)CFU/m3,其他下垫面空气的细菌和真菌浓度分别在(155.5±14.2)~(596.6±396.4)和(401.9±78.7)~(994.7±63.4)CFU/m3之间. 海滨区域空气细菌浓度下午明显高于上午和中午,其他下垫面表现为上午>下午>中午,但无显著性差异;市区街道、饮用水水源地、人工湿地污水处理厂的空气真菌浓度日变化表现为上午>中午>下午,城市垃圾填埋场则始终升高,除人工湿地污水处理厂和城市垃圾填埋场不同时段间空气真菌浓度有显著性差异外,其余下垫面无显著性差异. 细菌气溶胶粒径分布为F1级(粒径>7.0μm)最高,呈偏态分布;真菌气溶胶粒径呈对数正态分布,除城市垃圾填埋场峰值出现在F3级(3.3~4.7μm)外,其余下垫面均出现在F4级(2.1~3.3μm). 不同下垫面细菌气溶胶中值直径在2.8~4.6μm,存在差异;而不同下垫面空气真菌气溶胶中值直径均在2.0μm左右,无显著性差异.   相似文献   

15.
用不同级数的 FA- 型、FA- 型和由 FA- 型 6级简化为 2级型的 3种类型的 ANDERSEN生物粒子采样器 ,在室内外对空气微生物粒子浓度、粒子大小分布的采样效果进行了比较 ,同时对 FA- 型生物粒子采样器的性能进行了检测。结果表明 ,5台 FA- 型生物粒子采样器的第 1级、第 2级采集的空气微生物粒子数和所占粒数百分比均无明显差别 ;逃失率为 3.3%。FA- 型和 FA- 型采样器对空气微生物粒子浓度的采样效果也没有明显差别 ;由 FA- 型 6级简化为 2级型的采样器与 FA- 型采样器对空气微生物粒子浓度和粒子大小分布的采样效果有明显差别 ,FA- 型采样器不宜简化为 2级型采样器使用  相似文献   

16.
京、津地区大气微生物的浓度   总被引:13,自引:3,他引:10  
本文用仿制美国的ANDERSEN生物粒子采样器测定了北京两单、丰台和天津塘沽海滨三个地点的大气细菌和真菌浓度,结果表明,年平均空气细菌浓度北京西单为3.02个/L、丰台为2.56个/L、天津塘沽海演为1.38个/L,丰台真菌为1.20个/L,在一天内,大气细菌浓度分布明显出现7点、22点二个高峰时和13点、夜间1点二个低峰时,由ANDERSEN采样分为六级的大气细菌浓度亦有同样的目变化规律。  相似文献   

17.
北京市夏季空气真菌生态分布特征   总被引:8,自引:1,他引:7  
研究了北京市夏季空气真菌的群落结构和分布特征.结果表明,空气真菌优势菌属依次为枝孢属(Cladosporium)、链格孢属(Alternaria)、无孢菌(non—sporulating mycelia)、青霉属(Penicillium)和曲霉属(Aspergillus),其中枝孢属浓度占总浓度的47.2%,出现频率为100%,是绝对的优势真菌属.在不同的功能区,教区枝孢属最多,占53.5%,交通干线青霉属和链格孢属最多,分别占7.2%和24.3%.公园绿地无孢菌占31.7%,明显多于教区和交通干线,不同的环境条件能够改变空气真菌类群的浓度.公园绿地和教区空气真菌总浓度明显高于普通干线(P<0.01).空气真菌的粒子径主要分布在1.0—6.0um,约占总数的70%,呈对数正态分布.公园绿地空气真菌中值直径大于交通干线和教区,分别为2.50um,2.37um和2.04um.  相似文献   

18.
垃圾填埋场空气真菌群落结构和时空分布特征   总被引:2,自引:1,他引:1  
为了解垃圾填埋场空气真菌的群落结构和浓度、粒径的时空分布,在北京市某垃圾卫生填埋场填埋区、渗滤液处理区、生活区分别选定监测点,利用安德森六级微生物采样器,对填埋场空气真菌进行了系统的定点取样和分析.结果表明,除无孢菌外,共出现了15属空气真菌.优势菌属依次为枝孢属(Cladosporium)、曲霉属(Aspergillus)、青霉属(Penicillium)、无孢菌群(Non-sporing).填埋区和渗滤液处理区空气真菌浓度约为1 750 CFU.m-3,明显高于生活区(p0.05).2006年4月~2007年1月空气真菌浓度变化曲线呈双峰型,2个高峰分别出现在5月和9~10月,浓度可达5 000 CFU.m-3以上.填埋区4~7月空气真菌09:00~11:00的浓度低于15:00~16:00,在8月~次年1月趋势相反.空气真菌粒子在Ⅲ~Ⅴ级约占总数的75%.填埋区和渗滤液处理区的空气真菌中值直径均为2.9μm,生活区为2.8μm,3个功能区空气真菌的中值直径没有差异(p0.05).  相似文献   

19.
沈阳市大气细菌与真菌粒子的关系   总被引:3,自引:1,他引:3  
用ANDERSEN生物粒子采样器对沈阳市大气细菌和真菌粒子的密度、密度分布、粒度分布及两者关系进行了观察和。结果表明,沈阳市大气年平均密度细菌粒子为7228个/m^3,真菌粒子为1797个/m^3,细菌为真菌的4.1倍。细菌粒子密度和粒度均呈正偏态分布,真菌粒子密度和粒度均呈对数正态分布。〈8.2μm的可吸入粒子,细菌为4326个/m^3,占其总数的61.4%;真菌为1583个/m^3,占其总数的  相似文献   

20.
为调查南京市学校教室内空气微生物污染状况,本研究各选一所幼儿园、小学、初中和大学,每所学校分别随机选取10间教室,采用六级安德森采样器进行空气微生物采样.研究发现,在南京地区所调研的这4所不同类型的学校中,幼儿园室内空气微生物浓度最高,细菌和真菌浓度均值分别为605CFU/m3和648CFU/m3,均显著高于其余3所学校.室内细菌和真菌粒径分布趋同,峰值均出现在Ⅴ级(1.1~2.1μm).仅在大学教室内,发现环境参数与空气微生物浓度存在显著相关性.幼儿园教室内学生每天吸入的细菌和真菌剂量分别为150.2CFU/kg和160.9CFU/kg,均显著高于其他学校学生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号