首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
大气细菌粒子与飘尘粒子的关系   总被引:3,自引:0,他引:3  
本研究用ANDERSEN生物粒子采样器和光散射气溶胶粒子计数器,在北京西单和丰台对大气细菌粒子与飘尘粒子的浓度和浓度分布及两者之间的关系进行了观测。结果表明,大气细菌粒子的日平均浓度为2.882个/l,浓度分布是从第6级至第1级逐级增大;飘尘粒子的平均浓度为149464个/l,浓度分布是从0.5~32μm依次减小:大气细菌粒子浓度与≥2.0μm的飘尘粒子有非常明显的正相关关系。  相似文献   

2.
北京地区大气细菌粒子浓度及其分布   总被引:4,自引:0,他引:4       下载免费PDF全文
用ANDERSEN生物粒子采样器在北京西单和怀柔观测了大气细菌粒子浓度及浓度分布。结果表明,大气细菌粒子年平均浓度,西单为3103个/m3,怀柔为623个/m3。不同粒度的大气细菌粒子浓度在一天内西单有7:OO、19:00二个高峰时和13:00、夜间1:00二个低谷时;而怀柔有19:00~22:00一个高峰时和13:00一个低谷时。大气细菌粒子的浓度分布是从1~6级逐级减小。小于8.2μm的可吸入细菌粒子:西单为82.4%,怀柔为64.0%。   相似文献   

3.
降雪对大气细菌粒子的影响   总被引:7,自引:0,他引:7  
本工作用 ANDERSEN 生物粒子采样器在沈阳市北陵地区观测了降雪对大气细菌粒子浓度、浓度分布、粒数中值直径和粒度分布的影响.结果表明,降雪对大气细菌粒子浓度和粒数中值直径有明显减小作用.同时表明,大气细菌粒子越大,被降雪清洗减少的作用就越强.  相似文献   

4.
北京冬季大气中多溴联苯醚的污染水平和分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2010年11月至2011年2月利用聚氨酯泡沫(PUF)大气被动采样技术采集了北京市海淀、朝阳、丰台、石景山、昌平、大兴、通州等区域的大气样品,采用高分辨气相色谱/高分辨质谱联用法(HRGC/HRMS)分析了其中13种多溴联苯醚(PBDEs)同族体的污染浓度和分布特征.结果表明,北京大气中PBDEs总含量(Σ13PBDEs)为0.97~41.1pg/m3,平均值为7.85pg/m3.在区域分布规律方面呈现东南地区的采样点污染物浓度明显高于西北地区,工业地区和人口密集的商业地区明显高于郊区和背景对照区的分布特征.  相似文献   

5.
城区大气颗粒物中有机氯农药的含量与分布   总被引:21,自引:1,他引:20       下载免费PDF全文
采用FA-3型气溶胶粒度分布采样器采样,对北京和天津2个样点夏季大气中不同粒径颗粒物上有机氯农药残留量进行分析.在所有分级样品中均检测出δ-HCH,p,p'-DDD和p,p'-DDT,其他有机氯农药只在部分样品中被检出.北京样中HCHs(α-HCH+β-HCH+γ-HCH+δ-HCH)含量为0.240ng/m3,DDTs(p,p'-DDT+p,p'-DDD+p,p'-DDE)含量为0.962ng/m3,天津样品中HCHs含量为0.581 ng/m3,DDTs含量为1.874ng/m3.天津样中有机氯农药残留明显高于北京样.大气颗粒物上的有机氯农药粒径分布特征为:北京样中HCHs和DDTs含量随粒径均呈单峰分布,而天津样中HCHs呈三峰态分布,DDTs呈较弱的单峰态分布.HCHs和DDTs两类化合物的质量中值直径和分散度分别在2.1~2.5μm和3.1~3.7μm范围内.   相似文献   

6.
在1986和1987年夏,对北京市城郊几个测点进行了大气甲醛和总醛的采样分析.用酚试剂法测总醛,乙酰丙酮法测甲醛。1986和1987二年大气总醛浓度平均值分别为18.5和9.9μg/m~3;1987年夏大气甲醛浓度平均值为4.4μg/m~3.甲醛约占总醛的50%.甲醛和总醛浓度的日变化呈双峰形,其浓度的高低与机动车密度,气象条件等关系密切.北京大气醛类化合物浓度水平是一次污染与二次污染的叠加结果。  相似文献   

7.
上海市大气沉降物中多环芳烃赋存特征及其来源   总被引:2,自引:0,他引:2  
以上海市大气沉降为研究对象,采集了上海市8月、9月、10月3个月的大气沉降物,分析了上海市大气沉降物中16种PAHs的质量浓度、空间分布特征和组成结构,计算了上海市8个采样点∑15PAHs大气沉降物通量.同时,采用正定矩阵因子分解(PMF)模型对大气沉降中的PAHs进行源解析,模型对PAHs的来源有较为细致的判读,结果表明:大气沉降物中∑16PAHs的浓度范围0.458~21.013μg/L,其中,溶解相中∑16PAHs的浓度范围为0.174~0.625μg/L,颗粒相中∑16PAHs的浓度范围为0.275 20.455μg/L.上海市∑15PAHs大气沉降通量在0.24~14.74μg/(m2×d)之间,沉降通量均值为2.77μg/(m2×d).根据PMF模型解析,机动车尾气排放为大气沉降物中PAHs的主要污染物,源贡献率为40.23%,其次,居民烹调、煤炭燃烧、石油挥发泄露和炼焦排放依次占23.73%、14.75%、14.35%和6.92%.  相似文献   

8.
本文报告了用微孔滤膜采样法(MF45)测定的北京20个地点,四个时段的近地面大气细菌浓度。平均计算,1983年11月为10200cfu/m3,1984年3月为2270cfu/m3,1984年8月为750cfu/m3,1985年1月为2160cfu/m3。 20个地点细菌空气浓度差异较大。城市街道和郊区县镇浓度较高,分别为5171cfu/m3和6617 cfu/m3;旅游区和郊区农业区较低,分别为2180cfu/m3和3110cfu/m3.  相似文献   

9.
大气微生物的研究——Ⅰ.京津地区大气细菌区系   总被引:2,自引:0,他引:2  
在京津地区1108个点研究大气细菌污染;选择位于京津地区纵轴线上的7个点,研究大气的细菌区系;选择位于北京市生态环境十分不同的12个点,挑取不同培养特征以及优势菌的细菌菌落进行鉴定。共鉴定383株菌,分别属于8个属,2个菌群。部分菌鉴定到种。京津地区大气细菌的优势菌是微球菌、葡萄球菌、芽孢杆菌等。  相似文献   

10.
北京大气颗粒物污染的区域性本质   总被引:19,自引:3,他引:16  
颗粒物是北京的首要大气污染物,2006年PM10年均浓度超标60%以上.本研究基于颗粒物质量浓度在线监测和逐日TSP的采样分析,结合地面天气形势,论述了北京大气颗粒物污染的区域性特征.首先,北京大气颗粒物污染过程的形成由以冷锋过境为明显标志的周期性的天气系统决定,天气系统的活动尺度决定了颗粒物污染的区域性.其次,从PM2.5/PM10和Pb/Al比值的变化判别出颗粒物污染过程中随着颗粒物浓度的升高,细颗粒物呈现富集趋势;细颗粒物的富集由粗颗粒物的去除和超细颗粒物的生成(核化过程)、以及二次颗粒物的生成所致;污染过程中颗粒物的老化以及化学组成(Pb/Al)的大幅度变化共同表明了北京大气颗粒物来源的区域性本质.  相似文献   

11.
垃圾填埋场空气真菌群落结构和时空分布特征   总被引:2,自引:1,他引:1  
为了解垃圾填埋场空气真菌的群落结构和浓度、粒径的时空分布,在北京市某垃圾卫生填埋场填埋区、渗滤液处理区、生活区分别选定监测点,利用安德森六级微生物采样器,对填埋场空气真菌进行了系统的定点取样和分析.结果表明,除无孢菌外,共出现了15属空气真菌.优势菌属依次为枝孢属(Cladosporium)、曲霉属(Aspergillus)、青霉属(Penicillium)、无孢菌群(Non-sporing).填埋区和渗滤液处理区空气真菌浓度约为1 750 CFU.m-3,明显高于生活区(p0.05).2006年4月~2007年1月空气真菌浓度变化曲线呈双峰型,2个高峰分别出现在5月和9~10月,浓度可达5 000 CFU.m-3以上.填埋区4~7月空气真菌09:00~11:00的浓度低于15:00~16:00,在8月~次年1月趋势相反.空气真菌粒子在Ⅲ~Ⅴ级约占总数的75%.填埋区和渗滤液处理区的空气真菌中值直径均为2.9μm,生活区为2.8μm,3个功能区空气真菌的中值直径没有差异(p0.05).  相似文献   

12.
利用Andersen空气微生物采样器采集青岛市不同空气质量下的可培养生物气溶胶,分析了其浓度和粒径分布特征,并利用Spearman’s相关性分析了可培养生物气溶胶浓度和空气质量指数中的颗粒物质量浓度〔ρ(PM10)、ρ(PM2.5)〕、气体污染物质量浓度〔ρ(O3)、ρ(SO2)、ρ(NO2)〕和气象参数(温度、相对湿度、风速)之间的关系.结果表明:可培养真菌和细菌气溶胶浓度范围分别为133~1 113和13~212 CFU/m3.真菌气溶胶浓度与ρ(SO2)、ρ(PM10)、ρ(PM2.5)均呈正相关,而与相对湿度呈显著负相关(P<0.05).细菌气溶胶浓度与ρ(NO2)、ρ(SO2)呈负相关,而与ρ(O3)、温度呈正相关.风速对可培养生物气溶胶浓度的影响较小.以AQI(空气质量指数)中ρ(PM10)为依据,将研究时间段空气质量划分为4个空气污染等级.在不同污染等级下,真菌气溶胶均呈对数正态分布,粒径主要分布于2.1~4.7 μm.低污染时细菌气溶胶呈偏态分布(粒径>4.7 μm),高污染时粒径分布发生改变.初步推断,随着空气污染等级的升高,可培养生物(真菌+细菌)气溶胶总浓度增加,但单位颗粒物上的浓度变化较稳定.ρ(PM10)是影响可培养生物气溶胶浓度及粒径分布的主要因素.   相似文献   

13.
青岛近海夏、秋季生物气溶胶分布特征研究   总被引:3,自引:2,他引:1  
于2009年7~11月采用Andersen生物粒子采样器在青岛近海连续采集了生物气溶胶样品,应用荧光显微镜计数法和平板计数法测定了总微生物(包括"可培养类"和"非可培养类")、"可培养类"陆源及海源微生物的浓度.结果表明,总微生物中"非可培养类"微生物平均占总微生物的99.58%;"可培养类"微生物平均仅为0.42%;...  相似文献   

14.
为调查南京市学校教室内空气微生物污染状况,本研究各选一所幼儿园、小学、初中和大学,每所学校分别随机选取10间教室,采用六级安德森采样器进行空气微生物采样.研究发现,在南京地区所调研的这4所不同类型的学校中,幼儿园室内空气微生物浓度最高,细菌和真菌浓度均值分别为605CFU/m3和648CFU/m3,均显著高于其余3所学校.室内细菌和真菌粒径分布趋同,峰值均出现在Ⅴ级(1.1~2.1μm).仅在大学教室内,发现环境参数与空气微生物浓度存在显著相关性.幼儿园教室内学生每天吸入的细菌和真菌剂量分别为150.2CFU/kg和160.9CFU/kg,均显著高于其他学校学生.  相似文献   

15.
室内外空气真菌污染状况初探   总被引:4,自引:0,他引:4  
用Andersen生物粒子采样器和平皿沉降法分别观测了室内和室外空气真菌粒子浓度,粒数中值直径和沉降量。结果表明,室外空气真菌粒子浓度高于室内空气真菌粒子浓度,室外空气真菌粒数中值直径大于室内空气真菌数中值直径,室外空气真菌粒子沉降量大于室内空气真菌粒子沉降量。  相似文献   

16.
青岛市不同下垫面微生物气溶胶分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
分别在青岛市市区街道、海滨区域、饮用水水源地、城市垃圾填埋场和人工湿地污水处理厂设置监测点,分析比较不同下垫面空气细菌和真菌浓度、日变化和粒径分布. 结果表明:5个下垫面空气细菌浓度依次为城市垃圾填埋场>市区街道>饮用水水源地>海滨区域>人工湿地污水处理厂,真菌浓度依次为城市垃圾填埋场>人工湿地污水处理厂>饮用水水源地>市区街道>海滨区域,其中城市垃圾填埋场空气细菌和真菌浓度最高,分别为(613.1±68.9)、(1300.4±74.3)CFU/m3,其他下垫面空气的细菌和真菌浓度分别在(155.5±14.2)~(596.6±396.4)和(401.9±78.7)~(994.7±63.4)CFU/m3之间. 海滨区域空气细菌浓度下午明显高于上午和中午,其他下垫面表现为上午>下午>中午,但无显著性差异;市区街道、饮用水水源地、人工湿地污水处理厂的空气真菌浓度日变化表现为上午>中午>下午,城市垃圾填埋场则始终升高,除人工湿地污水处理厂和城市垃圾填埋场不同时段间空气真菌浓度有显著性差异外,其余下垫面无显著性差异. 细菌气溶胶粒径分布为F1级(粒径>7.0μm)最高,呈偏态分布;真菌气溶胶粒径呈对数正态分布,除城市垃圾填埋场峰值出现在F3级(3.3~4.7μm)外,其余下垫面均出现在F4级(2.1~3.3μm). 不同下垫面细菌气溶胶中值直径在2.8~4.6μm,存在差异;而不同下垫面空气真菌气溶胶中值直径均在2.0μm左右,无显著性差异.   相似文献   

17.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

18.
为了解北京市室外细菌气溶胶的分布特征,基于培养法分析了2020年9月—2021年5月不同季节细菌气溶胶浓度及粒径的分布特征,探讨气象因素(温度和相对湿度)和空气颗粒物(PM10和PM2.5)对细菌气溶胶分布特征的影响. 结果表明:①北京市室外细菌气溶胶平均浓度为447.10 CFU/m3 (每立方米空气中的菌落形成单位),呈春季〔(648.55±537.24)CFU/m3〕>冬季〔(324.50±181.99)CFU/m3〕>秋季〔(319.59±305.07)CFU/m3〕的特征,不同季节细菌气溶胶浓度差异不显著. ②北京市室外约80%的细菌气溶胶直径大于2.1 μm,细菌气溶胶浓度在第2级(粒径为4.7~7.0 μm)显著降低,峰值粒径出现在第1级(粒径>7.0 μm). 粒径大于7.0 μm的细菌气溶胶在春季与秋季以及春季与冬季之间均存在统计学差异 (p均小于0.05). 可进入人体下呼吸道的细菌气溶胶(≤4.7 μm)比例近50%(冬季、秋季、春季占比分别为61.0%、58.9%、41.6%),冬季空气中可进入人体下呼吸道的细菌气溶胶比例最高. ③Spearman相关性分析表明,室外环境细菌气溶胶浓度与相对湿度呈显著负相关(p<0.05),与PM10浓度呈显著正相关(p<0.05),表明细菌气溶胶浓度受气象因素和空气污染物的影响. 研究显示,北京市室外环境中可进入人体下呼吸道的细菌气溶胶比例近50%,冬季细菌气溶胶暴露风险最高.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号