首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
广州市空气污染治理重点逐渐转向臭氧污染治理,理清臭氧污染特征是制定治理措施的基础。文章利用经验正交函数分解方法对2016-2018年广州市51个监测点的臭氧逐时浓度进行分解。分解得到的51个模态的解释方差均较小,反映出臭氧污染特征的复杂性。该文只分析头3大模态,累积解释方差贡献率32.7%。第一模态显示市区及南部地区臭氧为负距平值区,北部地区为正距平值区,反映的是臭氧和二氧化氮的"跷跷板"关系;第二模态显示广州南部为正距平值区,北部为负距平值区,中部为过渡区,反映的是南北地区受太阳辐射不同所导致的臭氧浓度差异;第三模态的时间系数存在明显的日变化和季节变化,空间分布反映的是城乡差异,反映的是城市热岛效应对臭氧浓度的影响。  相似文献   

2.
以高浓度臭氧为主要特征的光化学污染是城市地区主要的大气污染问题之一。利用WRF-CALGRID空气质量模式系统模拟南京地区的光化学污染特征,结果显示前体物的浓度分布与污染物排放的情况较吻合,臭氧的高值区主要分布在城市的下风方向、源区浓度较低,白天臭氧的浓度普遍大于日平均浓度。利用WRF-CALGRID模拟减少35%前体物排放后臭氧浓度的变化,结果显示前体物浓度减小幅度与35%相差不大,减少NOx时臭氧增加、减少VOC时臭氧减少,说明南京城市区域多为VOC控制区;进一步通过光化产物指示因子分析,结果显示南京地区的指示因子数值小于敏感性过渡值,控制臭氧浓度要控制VOC的排放。利用WRF-CALGRID模拟未来气温增加条件下臭氧的变化,结果显示南京大部分地区浓度将增高1×10-9以上。城市光化学污染问题不容忽视。  相似文献   

3.
宝鸡市夏季臭氧及其前体物污染特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
强琳  董卫民  徐衡  刘凯 《环境工程》2016,34(6):101-105
采用宝鸡市2014年夏季臭氧相关监测数据对臭氧及其前体物污染特征进行研究。结果表明:多云导致的太阳辐射降低对臭氧浓度下降贡献40%,降水对臭氧浓度降低贡献55%。O3与NOx在辐射时段内呈一次负相关,相关系数为0.96,在无辐射时段无显著相关性。O3与CO在辐射时段呈二次线性负相关,相关系数为0.92,在无辐射时段呈二次线性正相关,相关系数为0.96。宝鸡市夏季CO/NOx比值为40.5。  相似文献   

4.
基于2014年10月的气象场与排放源数据,使用三维空气质量模型,通过设置40种不同的区域NOx与VOCs减排情景,模拟了不同减排情景下珠海不同点位的臭氧浓度变化。总体而言,珠海市不同点位的臭氧与区域前体物减排的关系存在一定差别,表明珠海臭氧污染是区域性问题,但不同点位的臭氧对前体物排放的敏感性存在差别,东面的站点需要更大的削减量才能达到与西部站点相同的臭氧浓度下降率。VOCs∶NOx削减比率越大,珠海市臭氧浓度越容易下降。因此,要控制珠海的臭氧污染,应加大对珠三角区域VOCs的控制。  相似文献   

5.
对昆明市2014—2018年空气质量和臭氧(O3)污染特征进行了分析,并结合臭氧污染观测资料和气象条件,对昆明市臭氧浓度与气象因子相关性进行了初步研究。结果表明:昆明市空气质量总体逐渐变好,臭氧浓度整体呈上升趋势,春季和夏季臭氧污染比较明显;臭氧浓度春季高,秋冬季低,高值主要集中在3—5月;臭氧污染主要出现在3—8月,7月最高;臭氧浓度与太阳辐射、气温、大气低层温度垂直分布、风速等总体呈正相关,与气压、相对湿度总体呈负相关。  相似文献   

6.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究   总被引:1,自引:0,他引:1  
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素.  相似文献   

7.
为研究上海春季近地面臭氧污染的区域性特征,对长三角地区55个城市国控站点及上海市54个城市监测站点2016年5月的臭氧监测网络数据进行主成分分析(Principal Component Analysis,PCA),并将分析结果与气象条件进行综合分析,结果表明,主成分分析在不同的空间尺度下可以解析出行为模式不同的臭氧生成及传输来源主成分,且在较大的空间尺度下可以解析出区域背景臭氧浓度.长三角地区春季区域臭氧特征复杂,存在9个主成分,第一主成分所能解释的背景臭氧浓度在68.8~154.7μg·m~(-3)之间,而上海市主成分解析结果较为集中,仅能解析出两个主成分,且第一主成分即可解释90.5%的臭氧.对比同时段长三角及上海市主成分分析解析结果,上海市春季臭氧污染主要受到来自海洋的东南风影响,高浓度臭氧污染的本地生成贡献显著.  相似文献   

8.
基于2000~2015年香港地区的臭氧监测数据和气象数据,分析了香港的臭氧污染特征及气象因素对臭氧污染的影响.结果表明:(1)香港地区臭氧浓度呈现明显的季节变化特征,其中秋季春季冬季夏季,臭氧超标日集中在夏季和秋季,超标日发生在冬季和春季的情形极少.(2)2000~2015年香港臭氧日最大8h平均浓度(MDA8)年均浓度呈增长趋势,平均增长速率为0.77μg·(m3·a)-1,臭氧MDA8第90百分位数浓度同样呈增长趋势,增长速率为1.49μg·(m3·a)-1.(3)较高的气温是香港地区臭氧污染发生的必要条件,气温越高越容易导致更高浓度的臭氧污染.(4)绝大多数情况下,臭氧浓度与相对湿度间呈负相关关系,相对湿度越高,香港地区的臭氧MDA8平均浓度及第90百分位数浓度均会降低.(5)当香港发生臭氧污染时,盛行风往往从偏北风或偏东风转为偏西风.随着风速的增大,臭氧平均浓度变化不大,但是臭氧第90百分位数浓度会明显降低.(6)降水和云量是影响臭氧浓度的重要因素,连续多日的无雨或少雨天气是臭氧污染事件发生的必要条件,而随着云量的增加,臭氧平均浓度和第90百分位数浓度会持续降低.(7)在太阳总辐射量≤20 MJ·m-2或日照时长≤10 h的情况下,臭氧浓度与太阳辐射及日照时长呈正相关关系.然而,在太阳辐射强烈的情况下(太阳总辐射量 20 MJ·m-2或日照时长 10 h),随着太阳辐射增强或日照时长的增加地面臭氧浓度反而降低,这是因为太阳辐射强烈的情况常出现在雨后天晴的背景下,并盛行来自海洋的偏南风,使得臭氧污染不易形成.(8)香港臭氧超标日的出现往往伴随着一系列气象条件的共同改变,包括晴天少雨、辐射增强、边界层高度增加、相对湿度降低、风速变小以及气温升高等气象特征,污染结束则伴随着相反的气象变化.  相似文献   

9.
选取梅州为粤东北地区代表城市,使用高阶去耦合直接法(High-order Decoupled Direct Method,HDDM)开展臭氧与前体物关系研究。一阶敏感性系数表明,在夏季,减少省外VOCs或NOx排放对梅州的臭氧污染控制都有利,梅州本地VOC排放的减少有利于降低臭氧浓度,但NOx的减排反而会加重臭氧污染水平,而省内其它城市排放的变化在大部分时候对梅州影响轻微。秋季,梅州本地的排放对梅州的臭氧影响最大,其次是外省的排放,广东省其它城市的影响轻微,减少省外或梅州市本地VOCs排放对梅州的臭氧污染控制都有利,省外NOx排放的减少在个别时候有利于降低臭氧浓度,个别时候会加重梅州臭氧污染,但梅州本地NOx的减排会加重臭氧污染水平。考虑二阶敏感性系数的臭氧与前体物排放变化曲线表明,粤东北地区的臭氧与外省前体物的排放或广东省其它城市前体物的排放呈现出高度的非线性关系。而梅州本地臭氧前体物的排放变化与臭氧浓度变化的关系较为线性。建议粤东北地区尽可能减少本地排放的VOCs以减轻臭氧的污染水平。  相似文献   

10.
为揭示我国主要城市群近地面臭氧的时空分布规律,使用空气质量监测网站发布的2019年243个城市共计1215个站点的臭氧浓度数据对中国正在稳步建设的19个城市群的臭氧时空分布特征进行分析,结果表明:臭氧污染高发期主要集中在夏季6、7月份,春末秋初次之,冬季基本不发生污染.城市群100μg/m³以上的臭氧浓度占比变化趋势大致表现为不规则的“V”和“W”两大类.2019年我国19个城市群可明显提取出北部和南部两个浓度分布高值中心,分别出现在夏季和秋季,夏季根据污染严重程度又可将高值中心划分为两个层级.城市群臭氧浓度分布具有空间自相关特性,夏季热点区域与北部高值中心重合,秋季则与南部高值中心位置一致,此时冷点区域面积达到最大.由于臭氧污染成因的复杂性,不能简单以现有城市群等级划分结果对其进行分级管理,需要根据实际分布情况对不同城市群制定相应污染防控措施.  相似文献   

11.
长江三角洲地区大气O3和PM10的区域污染特征模拟   总被引:14,自引:10,他引:14  
以TRACE-P污染源资料及上海市地方排放清单为基础,采用Models-3/CMAQ环境空气质量模型和中尺度气象模式MM5,模拟研究了2001-01和2001-07长三角近地面二次污染物O3及PM10的浓度分布及输送状况,并以上海市国控点2001年冬、夏季各10 d的小时监测数据对模型进行了验证.验证结果显示,Models-3/CMAQ对O3和PM10的模拟结果与监测值的相关系数分别为0.77和0.52;一致性指数分别达到0.81和0.99.模型对O3小时最高浓度的估算偏低27%,标准偏差为-3.1%;对PM10小时平均浓度的估算偏低10%,标准偏差为46%.模型已具备再现和模拟长三角大气污染输送过程的能力,且误差落在可接受的范围之内.模拟结果显示,2001-07长三角区域16个主要城市中,有14个城市O3小时最大浓度超过国家二级标准,高浓度O3可覆盖苏南和浙北广大区域.2001-01泰州、扬州、南京、镇江、常州等城市受本地排放源和北部大气污染输送的影响显著,大气PM10日均浓度超过PM10国家二级标准.长三角地区环境空气质量与污染类型受大气污染传输与化学转化的影响十分明显.夏季太阳辐射较强时,南部城市排放的污染物常以二次污染物的形式影响下风向城市;太阳辐射较弱的情况下,则以一次污染物输送为主的形式影响周边地区.冬季长三角区域颗粒物污染总体水平较高,这与我国北方地区排放的颗粒物在西北风作用下向长三角输送造成的影响密切相关.长三角地区的大气污染已逐渐从局地转为区域问题.  相似文献   

12.
上海市NOx分布状况及其影响因素   总被引:1,自引:0,他引:1  
以一种简易可靠的大气NOx测量方法,大范围地调查了上海市区的NOx浓度状况。结果表明,上海市NOx浓度分面状况,在不同性质的街区,不同地段,不同道路之间,存在明显差异,居民区大气中NOx的浓度可达到国家一级标准要求,但市区各道路网超标严重,平均是一级标准的1.7倍,道路网NOx的分布总体呈东南低,北和西北高的梯次。影响城市NOx浓度分布的主要因素有:交通、风力、地形、绿化等,在城市建设规划时,应充  相似文献   

13.
14.
为了加强对长江三角洲地区大气污染分布特征和输送规律的认识,利用移动车载设备开展了不定期的走航观测,重点研究了2016-2018年冬季灰霾污染和春季光化学污染条件下长江三角洲地区的大气污染特征.结果表明,走航观测期间长江三角洲地区PM2.5日均浓度为60~122 μg/m3,东部的常州、无锡一带,西部的合肥、芜湖地区,北部蚌埠、滁州一带,南部湖州、杭州地区的PM2.5浓度较高,比其他地区高出20%~40%.O3日均浓度水平为9~52 μg/m3,苏州、盐城、宣城与湖州地区浓度相对较高.运用FLEXPART_WRF模式,结合PM2.5排放清单,分析了走航观测期间长江三角洲地区及沿线城市PM2.5的潜在来源.结果发现,东风条件下,南通及上海地区为PM2.5的潜在源区,北风条件下,连云港、盐城等地区贡献较大.运用FLEXPART前向轨迹计算模块,对一次污染个例过程进行了模拟,并利用走航观测结果进行了验证,发现模拟结果与走航观测结果的相关系数达到0.9.可见,长江三角洲地区存在区域性的PM2.5和O3污染,走航观测结合轨迹分析是追踪污染气团输送的有效手段.  相似文献   

15.
BiologicallyeffectiveradiationofsolarultravioletradiationandthedepletionofstratosphericozoneWangShaobin;SuWeihan(ResearchCent...  相似文献   

16.
城市化、工业化、机动化的高速推进以及大气活性物质的大量排放,使得长江三角洲地区在夏秋季节面临严峻的以高浓度O3为典型特征的光化学污染问题.然而,O3与其前体物之间的高度非线性反应过程使得其来源识别变得十分复杂,因此针对高浓度O3的控制途径仍不清楚.本文以2013年7月长三角地区发生的一次持续时间长、波及范围广、强度高的高浓度O3污染过程为研究案例,基于CAMx空气质量数值模型中耦合的臭氧来源追踪方法(OSAT),采用物种示踪的方法对长三角3个代表性城市上海、苏州、杭州近地面O3的污染来源开展了模拟研究,探讨了4个源区(上海、浙北、苏南和长距离输送)、7类排放源(工业锅炉和窑炉、生产工艺过程、电厂、生活源、流动源、挥发源和天然源)对上海、苏州和杭州城区地面O3的浓度贡献.研究结果表明:长距离输送以及区域背景产生的O3约在20×10-9~40×10-9(体积分数)之间;加上上海及苏南、浙北地区排放的前体物在长三角城区地区二次生成O3,可使O3上升至40×10-9~100×10-9(体积分数)乃至更高.模拟时段内日间8 h O3浓度的地区贡献分析结果显示,长距离传输对于上海、苏州、杭州的浓度贡献分别为42.79%±10.17%、48.57%±9.97%和60.13%±7.11%;上海城区O3来源中,上海本地污染贡献平均为28.94%±8.49%,浙北地区贡献约19.83%±10.55%;苏州城区O3来源中,苏南地区贡献约26.41%±6.80%;杭州城区O3来源中,浙北地区贡献约29.56%±8.33%.从各受点日最大O3小时浓度贡献来看,长距离传输贡献比例显著下降(35.35%~58.04%),而本地污染贡献上升.区域各类污染源贡献分析结果表明,长三角地区对O3污染贡献最为突出的几类污染源分别是工业锅炉和窑炉(浓度贡献约18.4%~21.11%)、生产工艺过程(19.85%~28.46%)、流动源(21.30%~23.51%)、天然源(13.01%~17.07%)和电厂排放(7.08%~9.75%).研究结果表明,工业燃烧排放、生产工艺过程中产生的VOC排放以及流动源大气污染物排放,是造成长三角区域夏季高浓度O3的主要人为源.  相似文献   

17.
长三角区域城市间一次污染跨界影响   总被引:18,自引:6,他引:12  
长三角城市群作为我国三大经济圈之一,高强度的能源消耗致使区域大气污染问题十分突出.为了定量弄清城市之间一次污染传输情况,以长三角15个城市的污染排放清单、MM5气象场为基础,利用CALPUFF空气质量模型,模拟测算了长三角区域内城市间一次污染跨界输送影响.结果显示,环太湖地区的上海、苏州、无锡和常州等地由于自身排放强度...  相似文献   

18.
春季是长三角地区对流层O3污染的高峰期之一,高浓度的O3暴露会影响冬小麦生长导致减产.利用长三角地区各城市2014年春季逐时ρ(O3)观测数据,研究了长三角地区春季O3污染特征,并结合O3暴露指数(M7指数和AOT40指数)和剂量-响应关系模型,详细评估了长三角地区O3污染对冬小麦产量的影响.结果表明:长三角地区春季ρ(O3)空间上总体呈南低北高的分布,长三角地区北部江苏和上海的ρ(O3)明显高于南部的浙江地区,在浙江北部、江苏和上海等地区,整个春季日最大8 h ρ(O3)平均值超过107 μg/m3,最高值出现在5月,超过128 μg/m3;一半以上的城市ρ(O3)超标[超过GB 3095-2012《环境空气质量标准》中8 h滑动平均ρ(O3)的二级标准限值(160 μg/m3)]日数在10 d以上,其中南京和扬州超标日数最多,分别为27和20 d;相应地,O3暴露指数也呈南低北高的分布,其中苏北地区O3暴露指数最高,导致长三角地区平均冬小麦相对损失达5.7%(M7)~25.5%(AOT40),造成的产量损失为7.85×105 t(M7)~4.49×106 t(AOT40),其中,苏北地区为5.8%(M7)~25.9%(AOT40),造成的产量损失为6.77×105 t(M7)~3.86×106 t(AOT40),占长三角地区冬小麦产量损失的86%以上.研究显示,当前长三角地区O3污染及其对冬小麦产量的影响已相当严重,特别是对苏北地区,而苏北地区是我国重要的冬小麦产地之一,因此,应当科学有效地治理O3污染以缓解粮食安全问题.   相似文献   

19.
臭氧是城市光化学烟雾的主要成分,同时也是重要的温室气体,因此臭氧污染已经成为城市空气质量的重要因素。利用近几年臭氧连续监测的数据,对臭氧的浓度变化特征进行了分析,并且对臭氧前体物(NOx、NOy、VOCs等)和气象因素作了相关性分析。结果表示臭氧浓度呈典型的季节性变化趋势,并且小时值变化出现明显的日变化规律,与太阳辐射强度成正相关;另外VOCs(挥发性有机物)与臭氧的变化规律基本一致,同时与NOx、NOy的浓度变化趋势存在较好的负相关性。  相似文献   

20.
南京城市下垫面变化对夏季臭氧浓度的影响研究   总被引:1,自引:0,他引:1  
利用南京基准地面气象站1951~2010年的气象数据分析南京气象要素的长期变化,利用2007年南京草场门大气污染物监测数据探讨O3同气象要素之间关系并分析气象要素改变对污染的可能影响,结合WRF-CALGRID模式基于2008年7月的情景模拟研究1990年代以后南京城市下垫面变化对气象要素变化的贡献,并分析其对O3浓度的影响.结果显示,南京气温呈现增长趋势,平均风速、大气湿度、日照时数呈现降低趋势.气温与O3浓度呈一定的正相关关系、较小的风速和相对湿度有利于O3的生成.城市下垫面的增加使得南京城区气温增高超过1℃、风速减小0.4m/s、湿度下降0.5g/kg、混合层高度增加100m.气象要素的改变使地面NOx浓度减小,最大减小量超过6×10-9.对O3浓度的影响有增有减,南京市北部、西部增加,增加量超过2×10-9,主要受温度增加、风速减小以及NO的垂直输送影响;主城区的南部、东部O3浓度减小,减少量1×10-9~3×10-9,主要受混合层高度增加的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号