首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了进一步认识大气气溶胶对气候环境的影响,基于2017年Aqua MODIS C006气溶胶光学厚度(aerosol optical depth,AOD)产品、CERES SSF Aqua MODIS Edition 4A数据集的地表短波辐射以及地面观测太阳辐射数据,对2017年新疆地区AOD和地表太阳辐射年变化进行研究,并以沙尘和人类活动气溶胶丰富的南疆典型地区喀什为代表城市,采用AccuRT辐射传输模式定量化研究晴空时气溶胶对地表短波辐射的影响.结果表明:①地表太阳辐射月均值最大值出现在和田站的5月,为441.62 W·m-2,最小值出现在乌鲁木齐站点的12月,为37.03 W·m-2;CERES/SSF地表短波辐射资料与地面观测结果相比,阿克苏站、焉耆站和伊宁站的差距最小,喀什站和若羌站全年存在高估现象,其他站点存在不同程度的高低估现象.②2017年新疆地区AOD格点平均的年均值最小值为0.0175,最大值为0.4610,南疆地区的AOD整体高于北疆地区;2017年AOD格点春夏季的AOD均值分布与全年均值分布特征相似,其中春季的AOD高值区区域面积高于其他季节.③根据AccuRT计算,当AOD由0.05增加为0.56时,四季的地表向下短波总辐射均呈下降趋势,夏季下降幅度最大,由923.02 W·m-2变化为677.61 W·m-2,其次为春季和秋季,冬季下降幅度最小.AOD的减少变化导致的地表向下短波总辐射通量、直射辐射通量和散射辐射通量变化敏感度明显高于AOD增加所导致的变化敏感度.  相似文献   

2.
为应对严重的大气污染问题,我国于2013年颁布并实施了严格的《大气污染防治行动计划》("大气十条").本研究利用在线耦合的区域大气化学传输模型WRF-Chem进行数值模拟,研究了2013—2017年"大气十条"实施期间大气气溶胶-辐射相互作用(Aerosol-Radiation Interaction,ARI)强度的变化及其对空气质量的影响,并量化分析了排放和气象条件变化对气溶胶-辐射相互作用强度变化和空气质量改善的相对贡献.研究发现,"大气十条"实施后ARI对PM2.5质量浓度的增强效应明显减弱,ARI效应的减弱导致2017年全国平均PM2.5浓度相较2013年下降了2.7 μg·m-3,占PM2.5浓度总降幅的9.1%.在这一过程中污染减排起了主导作用,约占ARI效应减弱导致全国平均PM2.5浓度下降的88%,气象条件变化的贡献约占12%.在季节尺度上,冬季ARI效应减弱最为明显,使得2017年冬季全国月平均PM2.5浓度同比2013年下降了12.1%.在区域尺度上,ARI效应的减弱对京津冀区域PM2.5浓度的影响最为显著,使得2017年该区域平均PM2.5浓度相较2013年下降了2.8 μg·m-3,占该区域PM2.5浓度总降幅的9.9%.2013—2017年,ARI效应对京津冀区域冬季重污染天气的影响程度也明显降低.以2013年1月和2017年1月为例,ARI效应使得这两个月内强霾事件期间区域日平均PM2.5浓度峰值分别增加了47.6 μg·m-3和33.7 μg·m-3.研究表明"大气十条"实施后ARI对PM2.5质量浓度的增强效应明显减弱,从而进一步推动了全国及重点区域PM2.5浓度的下降,带来了额外的空气质量改善效益.  相似文献   

3.
姚媛  贺欣  朱君 《环境科学学报》2020,40(6):1976-1986
利用地基CE-318太阳光度计反演数据、中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)、云-气溶胶激光雷达、红外路径探测卫星(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation,CALIPSO)遥感产品及拉格朗日混合单粒子轨迹模型(Hybrid Single Particle Lagrangian Integrated Trajectory Model,HYSPLIT),研究了中国西南云贵高原昆明站点混合型气溶胶日(2012年3月31日)、生物质燃烧气溶胶日(2012年4月4日)、城市工业气溶胶污染日(2013年8月15日)中气溶胶光学特性、辐射特性的差异及气溶胶三维分布和可能来源.结果表明,相比于其它两种类型气溶胶污染日,生物质燃烧气溶胶污染日气溶胶光学厚度(AOD)最高,达到1.18;吸收波长指数(AAE)值最大,为1.61;消光波长指数(EAE)值最大,为1.55,细模态气溶胶粒子占比更多,细模态体积浓度峰值达到0.15 μm3·μm-2;生物质燃烧气溶胶污染日气溶胶直接辐射强迫(ARF)绝对值均为3个污染日中最高(地表ARF为-149 W·m-2,大气顶ARF为-40 W·m-2,大气ARF为109 W·m-2),气溶胶对地表的降温效应达到最大,对大气的加热作用最明显.气溶胶直接辐射强迫效率(ARFE)结果显示,生物质燃烧气溶胶相比于城市工业气溶胶对大气顶的降温作用较小,对大气的加热作用更强.气溶胶混合污染日后向轨迹来源于当日有大量生物质燃烧的中南半岛区域和以城市工业气溶胶为主的中国华南及四川盆地区域,生物质燃烧污染日气流则来自中南半岛地区,上述地区同时也为MODIS AOD高值区;城市工业污染日的气流来自位于昆明局地和四川盆地的AOD高值区.气溶胶混合污染日昆明站点附近气溶胶主要位于海拔2300 m(来源于东北部的城市工业气溶胶)和4600 m(来自缅甸的生物质燃烧气溶胶)高度处;生物质燃烧污染日气溶胶浓度随高度增加而降低,3000、3500、4100 m 3个主要峰值高度处的气溶胶都来至于缅甸地区;城市工业气溶胶污染日峰值高度处气溶胶主要来自局地东北部区域,且气溶胶浓度随高度增加先增加后减小.  相似文献   

4.
上海市大气气溶胶中铅污染的综合研究   总被引:14,自引:2,他引:12  
采用质子激发X荧光分析(PIXE)、质子微探针、电感耦合等离子质谱(ICP-MS)和扩展X-射线吸收精细结构谱(EXAFS)等分析手段研究上海市大气气溶胶PM10中铅的浓度、化学种态和铅的源解析.研究发现2002年冬天和2003年上海地区大气气溶胶PM10中铅的平均浓度分别为369ng/m3和224ng/m3,铅的化学种态主要是PbCl2、PbSO4和PbO,燃煤烟尘、钢铁烟尘和汽车尾气是主要排放源,它们对气溶胶中铅的贡献率分别为50%、35%和15%.  相似文献   

5.
2016年12月-2017年1月,在南京市4类典型功能区(农业区、住宅区、交通干道区、工业区)各选两点,共采集了大气PM2.5样品32套,测定并分析了其质量浓度、9种水溶性离子(WSIs)、有机碳(OC)以及元素碳(EC)的含量.观测期间,南京市冬季PM2.5的平均浓度为104.5 μg·m-3,分布特征为:工业区(116.6 μg·m-3)>农业区(104.3 μg·m-3)>住宅区(100.1 μg·m-3)>交通干道区(96.9 μg·m-3);WSIs、OC和EC的平均浓度(/PM2.5)分别为:53.4 μg·m-3(51.1%)、11.8 μg·m-3(11.3%)、8.2 μg·m-3(7.8%).农业区和住宅区受WSIs污染较严重且NOR、SOR较高,而工业区和交通干道区的OC、EC污染较严重且SOC/OC较高.进一步运用PMF模型解析,南京市冬季PM2.5来源为:二次源(37.3%)、工业源(31.2%)、交通源(16.4%)、建筑尘(7.9%)和燃煤源(7.2%).最后,本文收集了自2000年起南京市冬季大气PM2.5浓度及其污染来源研究,总体而言,近年来南京冬季大气PM2.5浓度呈下降趋势,其主要污染源比重也发生了较大变化,燃煤贡献有所下降,而工业和交通排放逐渐上升,且二次污染贡献逐渐突出.今后,控制二次污染源将成为南京市大气PM2.5治理的重中之重.  相似文献   

6.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:12,自引:7,他引:5  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21 (冬季)和2007-04-01~2007-04-30 (春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、 62.4和7.5 μg/m3,夜晚的平均浓度分别为448.7、 66.1和6.9 μg/m3,对应春季白天的平均浓度分别为397.9、 26.7和6.9 μg/m3,夜晚分别为362.1、 31.9和8.6 μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2 μg/m3,远高于春季(2.8和3.4 μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   

7.
随着城市化和工业化水平的逐渐提高,河南省的空气污染问题也日益严重.利用嵌套网格空气质量模式(NAQPMS),数值模拟了2013年7月-2014年6月年河南省大气细颗粒物及其前体物(NO2、SO2、PM10、PM2.5)的地面浓度,并量化了其主要来源.结果表明:模式能够较好地再现污染物的时空演化特征.整体来讲,河南省PM2.5的高值区集中在中部和北部地区,呈现冬季高、夏季低的特点.在线源解析模拟发现,河南省不同地区PM2.5的来源有所不同,中西部地区主要来自于本地,而在东部和北部地市,来自周边省份的区域输送更为显著,其贡献达到40%~50%,且在PM2.5浓度的高值区更为明显.就行业贡献而言,居民源、工业源和机动车排放是河南省PM2.5浓度的主要来源,其浓度贡献分别为23.7 μg·m-3(贡献比例24%,下同)、20.6 μg·m-3(21%)和21.3 μg·m-3(22%),电厂、农牧业和地面扬尘的浓度贡献分别为7.0 μg·m-3(7%)、8.7 μg·m-3(9%)和17.8 μg·m-3(18%).受居民源影响最大的地区是河南中东部和北部地市,其贡献达到PM2.5浓度的27%、27%和25%.工业源影响最大的地区集中在太行山南部地市,其浓度贡献为26.4 μg·m-3(24%),在其他地市的贡献为17%~23%.机动车对河南东部影响最为显著,其浓度贡献为22.9 μg·m-3(24%).电厂和农畜牧业对全省PM2.5的贡献分布比较均匀,分别为6%~9%和8%~10%.分析不同浓度下的PM2.5来源,发现工业源和扬尘贡献随PM2.5浓度增加逐渐降低,而居民源和机动车排放的贡献则有所增加,在PM2.5浓度高于100 μg·m-3期间,达到22%和20%.  相似文献   

8.
港口区域因大气污染物排放量大且污染源复杂,已成为沿海城市大气污染防治的关键区域.为明确青岛港口区域PM2.5污染特征及主要贡献源类,于2019年在青岛市3个港口区域和1个背景点位采集了不同季节的环境PM2.5样品,并分析了其化学组分特征;同时,采用正定矩阵因子分析模型(PMF)和潜在源贡献函数(PSCF)分别分析了港口区域PM2.5的主要贡献源类及各源类潜在的影响区域.结果表明,2019年青岛港口区域ρ(PM2.5)年均值为64 μg·m-3,是我国空气质量二级标准的1.8倍,其中,董家口点位最高(74 μg·m-3),崂山点位最低(55 μg·m-3). NO3-、OC和SO42-是PM2.5的主导组分,其中,NO3-含量(13.1%)明显高于其它组分.董家口点位ρ(NO3-)、ρ(SO42-)、ρ(OC)和ρ(EC)(分别为13.0、7.09、8.98和2.91 μg·m-3)明显高于其它点位,燃煤、工业特别是钢铁企业及货车等影响可能较为明显.同时,冬季这些组分浓度也显著高于其它 季节,而夏季Na的浓度(0.96 μg·m-3)和占比(2.13%)明显较高;春季Si和Al的浓度(1.27和0.45 μg·m-3)和占比(2.79%和1.00%)明显高于其它季节.PMF源解析结果表明,二次硫酸盐和二次有机碳气溶胶(SOA)混合源(22.4%)及二次硝酸盐(20.1%)是港口区域PM2.5的主要贡献源类,其次为机动车源(16.7%)和扬尘源(14.6%),燃煤源的贡献率为13.8%,而海盐和船舶源的贡献为7.2%.从季节变化来看,春季扬尘贡献(32.1%)较高,夏季二次硫酸盐和二次有机碳气溶胶(SOA)混合源(31.6%)、海盐和船舶源(19.2%)贡献较高,而冬季燃煤(16.6%)、机动车(22.8%)、二次硝酸盐(23.9%)、钢铁及相关冶金源(3.2%)和建筑水泥尘(3.6%)贡献较高.河北省中南部及山东省中西部地区是青岛港口各 源类的主要潜在源区,黄海是船舶排放的主要潜在源区.  相似文献   

9.
为探讨石化企业对周边环境影响,以大型石化企业邻近工业区和居民区大气沉降多环芳烃为研究对象,连续采集2017年3月~2018年2月期间共计12个月的大气沉降样品,分析了大气沉降中多环芳烃沉降通量及组成特征,并采用正定矩阵因子法对多环芳烃来源进行解析.结果表明,邻近区域15种多环芳烃沉降通量范围为549~18845 ng·(m2·d)-1,平均值为2712 ng·(m2·d)-1,其中工业区全年沉降通量是居民区的1.36倍.冬春季节多环芳烃沉降通量高于夏秋季节,1月工业区沉降通量最高,10月居民区最低.菲(Phe)、苯并[b]荧蒽(BbF)和荧蒽(Fla)是研究区域大气沉降中的优势单体;夏秋季节两个区域单体差异明显,居民区中苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)和苯并[ghi]苝(BghiP)等单体沉降通量高于工业区,5,6环多环芳烃占比较高,表明交通源对居民区有较大贡献;工业区3环占比较高,指示石油挥发源.源解析表明,交通源、石油源和燃煤源是研究区域大气沉降中多环芳烃的主要来源,冬春季节3种来源对工业区和居民区多环芳烃的贡献率分别为45.7%、18.4%、35.9%和46.3%、21.4%、32.3%;夏秋季节交通源对居民区的贡献高达65.2%,石油源对工业区的占比增加到35.5%,由于高空排放及有利扩散条件影响,燃煤源贡献率明显降低.  相似文献   

10.
聂鑫  毛前军 《环境科学学报》2022,42(11):372-382
平流层中的硫酸盐气溶胶在地球能量循环和全球气候变化中发挥着关键性作用.基于自主开发的矢量辐射传输模型,重点研究对流层气溶胶类型、平流层气溶胶光学厚度(AOD)、太阳天顶角(SZA)和地表反照率等对平流层硫酸盐气溶胶辐射强迫和大气加热速率等辐射效应的影响.结果表明,对流层无气溶胶时,平流层气溶胶在大气顶层(TOA)的辐射强迫为-15.80 W·m-2,地气系统的冷却效应最大.对流层气溶胶为黑碳时,平流层气溶胶在大气底层(BOT)的辐射强迫最小,为-47.53 W·m-2,地表冷却最大.同时,平流层硫酸盐的辐射强迫导致对流层 降温,平流层升温,在模拟条件下,最大升温可达0.6 K·d-1.此外,结果还表明,平流层硫酸盐辐射强迫对AOD、SZA和地表反照率均具有很高的敏感性.平流层气溶胶在TOA和BOT的辐射强迫随AOD的增大呈线性减小趋势,但随地表反照率的增大呈线性增大趋势.AOD和SZA的增大会强化辐射强迫的作用效果,但地表反照率的增大可能会改变辐射强迫的正负,导致平流层硫酸盐对地气系统的作用效果从冷却变为加热.  相似文献   

11.
方婧  余博阳 《环境科学》2013,34(10):4050-4057
采用实验室柱淋溶方法,考察了纳米CeO2、纳米TiO2和纳米Al2O3材料在不同土壤中的运移行为,分析了纳米材料在土壤中运移能力与土壤性质的相关性,并采用胶体运移动力学模型估算了纳米材料在土壤中的最远运移距离.结果表明,纳米CeO2和纳米TiO2在试验的大部分土壤中有很强的运移能力,而纳米Al2O3仅在试验的酸性土壤中有较强的运移能力,在其他土壤中几乎被全部截留.纳米材料在土壤中运移的机制非常复杂,静电作用、土壤表面电荷异质性、团聚作用、张力作用(straining)以及过滤熟化作用(ripening)均对纳米材料的运移有着重要的影响.纳米CeO2的运移能力与土壤Zeta电位显著负相关;纳米TiO2的运移能力与土壤黏粒含量显著负相关,与土柱渗透系数显著正相关;纳米Al2O3的运移能力与土壤pH显著负相关,与土柱渗透系数显著正相关.模型估算的纳米CeO2、纳米TiO2和纳米Al2O3在试验土壤中的最远运移距离分别为52~69 043、31~332和<10~5 722 cm.纳米材料在一些土壤中的最远运移距离远远大于30 cm表层土壤的深度,意味着纳米材料在这些土壤中有向深层土壤运移的可能.  相似文献   

12.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

13.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

14.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

15.
沧州市大气污染特征观测研究   总被引:1,自引:1,他引:1  
王永宏  胡波  王跃思  刘伟  张武 《环境科学》2012,33(11):3705-3711
利用沧州2009年7月~2011年7月的NOx(NOx=NO+NO2)、O3、SO2以及PM10的观测数据,分析了沧州市大气污染物的日变化、月平均变化、年变化以及季节平均变化特征.结果表明,NOx、PM10日变化为双峰型,O3为单峰.SO2日变化也呈现为双峰型,但是其变化幅度较平缓.NO、NO2、NOx、SO2有较相同的季节变化趋势.NO、NO2、NOx、SO2及PM10冬季值最大,分别为(30.0±18.9)μg·m-3、(50.5±19.8)μg·m-3、(80.5±38.7)μg·m-3、(62.1±34.7)μg·m-3、(201.6±98.5)μg·m-3.臭氧夏季浓度最高,其月均值为(88.0±22.3)μg·m-3.NO、NO2、NOx、O3、SO2及PM10年均值分别为(18.9±14.5)μg·m-3、(37.6±13.0)μg·m-3、(56.5±27.5)μg·m-3、(49.9±16.3)μg·m-3、(31.6±19.5)μg·m-3、(156.7±79.1)μg·m-3.秋冬季污染物主要为NOx(NOx=NO+NO2)、SO2以及PM10,夏季污染物主要为O3.  相似文献   

16.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

17.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

18.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

19.
2013年北京市NO_2的时空分布   总被引:4,自引:2,他引:2  
对2013年北京市35个自动空气质量监测子站的NO2数据进行分析,探讨NO2的时间分布特征、空间分布特征以及与PM2.5和大气氧化性的相关性关系.结果表明,NO2浓度由高到低的季节依次是冬季、秋季、春季和夏季,平均浓度分别为66.6、58.3、54.7μg·m-3和45.8μg·m-3;NO2浓度由高到低的监测站依次为交通站、城区站、郊区站和区域站,年均浓度分别为78.6、57.9、48.5μg·m-3和40.3μg·m-3.NO2月均浓度呈波浪型分布,在1月份、3月份、5月份和10月份各出现一个峰值.整体来看,区域站NO2日变化曲线呈现单峰型分布,其他站点为双峰型分布.2013年NO2浓度呈现"反周末效应",即周末大部分时段NO2浓度高于工作日.分地区来看,年均NO2浓度由高到低的依次是城六区、西南部、东南部、西北部和东北部.各站点NO2浓度与PM2.5和OX浓度均为显著正相关,表明NO2可以通过增加前体物浓度和增强大气氧化性两方面造成PM2.5浓度升高.  相似文献   

20.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析. 使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析. 结果表明: 成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%. 二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号